

URNAI: A Multi-Game Toolkit for Experimenting
Deep Reinforcement Learning Algorithms

Marco A. S. Araújo
Metropolis Digital Institute

Federal University of Rio Grande do Norte
Natal, Brazil

marcocspc@hotmail.com

Luiz P. C. Alves
Computing and Automation Department

Federal University of Rio Grande do Norte
Natal, Brazil

luiz_paulo.09@hotmail.com

Charles A. G. Madeira
Metropolis Digital Institute

Federal University of Rio Grande do Norte
Natal, Brazil

charles@imd.ufrn.br

Marcos M. Nóbrega
Metropolis Digital Institute

Federal University of Rio Grande do Norte
Natal, Brazil

marcos.mnobrega@gmail.com

Abstract—In the last decade, several game environments
have been popularized as testbeds for experimenting
reinforcement learning algorithms, an area of research that
has shown great potential for artificial intelligence based
solutions. These game environments range from the simplest
ones like CartPole to the most complex ones such as StarCraft
II. However, in order to experiment an algorithm in each of
these environments, researchers need to prepare all the
settings for each one, a task that is very time consuming since it
entails integrating the game environment to their software and
treating the game environment variables. So, this paper
introduces URNAI, a new multi-game toolkit that enables
researchers to easily experiment with deep reinforcement
learning algorithms in several game environments. To do this,
URNAI implements layers that integrate existing
reinforcement learning libraries and existing game
environments, simplifying the setup and management of
several reinforcement learning components, such as
algorithms, state spaces, action spaces, reward functions, and
so on. Moreover, URNAI provides a framework prepared for
GPU supercomputing, which allows much faster experiment
cycles. The first toolkit results are very promising.

Keywords—game environment, toolkit, deep reinforcement
learning, experimentation setup

I. INTRODUCTION
Game environments have become very popular over the

last decade as testbeds for experimenting Reinforcement
Learning (RL) [12][15] and Deep Reinforcement Learning
(DRL) [16][14] algorithms, since the amount of labeled
training data available for training Artificial Intelligence
(AI) models is nearly infinite, low-cost, replicable, and
easily obtained at a much higher rate than in real-world
experiments. In addition to that, the combinatorial explosion
of the problems treated by several games leads to huge state
and action spaces, being natural and reasonable candidates
to be explored to design innovative AI solutions [7].

In order to contribute in this direction, some
international conferences, such as the annual IEEE
Conference on Games (CoG) and the annual AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), hold several Game AI competitions
[21] that are a great way to share practical solutions for hard

real-world problems simulated by game environments
[17][18]. However, in order to experiment an algorithm in
each of these game environments, researchers need to
prepare all the settings for each one. This task is very time
consuming since it entails integrating the game environment
to the researcher’s software and treating game environment
variables in order to set up the system with a particular
learning scenario and evaluate the system performance [19].

For this reason, researchers have tried to develop game
toolkits in order to make the experimentation task easier
[1][2]. As an alternative to these game toolkits, this paper
introduces URNAI, a new multi-game toolkit developed to
support researchers in the task of setting up their
experiments with DRL algorithms. The originality of
URNAI is that it supports multiple game environments and
multiple DRL libraries by using a layered and modular
architecture. This simplifies the setup and management of
several DRL components, such as algorithms, state spaces,
action spaces, reward functions, and so on.

This paper is structured as follows. First, section II
outlines previous work. Next, section III introduces
URNAI’s layered architecture. Section IV presents the DRL
libraries and game environments already integrated into
URNAI. Subsequently, section V explains how to set up
URNAI in order to do experiments. Next, section VI
explains how to start a training session with URNAI.
Section VII describes what needs to be done in order to
expand URNAI by integrating new DRL libraries or new
game environments. Subsequently, section VIII describes a
URNAI example of use. Next, section IX shows URNAI
performing experiments and presents the results obtained
with it. Finally, section X concludes with the contribution of
this paper and outlines a roadmap for future work.

II. RELATED WORKS
Open source DRL libraries and toolboxes have been

recently launched as new options to make training and
testing of DRL models easier for researchers, developers,
and even non-experts. Giant companies, such as Facebook,
Google, Uber and Tencent have invested in the development
of these kinds of solutions since the area is growing very
fast and it can be seen as a big bet for the coming years.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 373

The main idea is to provide new possibilities for users,
so that they can concentrate the efforts on making deep
learning architectures rather than data wrangling, by
interpreting the prototyping process and streamlining data
processing. This comes with further advantages for
non-programmers involving a set of command line utilities
for training, experimenting models, and gaining predictions.
These tools often also provide a programmatic API that
enables users to train and deploy a model with only a few
lines of code, treating different choices of modeling and
algorithms that require different observations and actions.

To support this, OpenAI Gym [2] was one of the first
solutions that introduced the concept of Wrapper, which can
be stacked and nested to design environments with different
observations and actions. This Gym environment is flexible
and its wrappers are widely used by the RL community. It
implements several simplified environments, in addition to
some atari games simulated through the Arcade Learning
Environment (ALE) [1]. Nonetheless, Gym only focuses on
the generalization of game environments, and leaves DRL
implementation, DRL model integration and DRL cycle in
the user’s hands.

Facebook ELF [10] implements a highly customizable
and lightweight real-time strategy (RTS) platform with three
game environments (Mini-RTS, Capture the Flag and Tower
Defense). The platform allows both game parameter
changes and new game additions. The training is deeply and
flexibly integrated into the environment, with emphasis on
concurrent simulations. One of its strengths is it has a very
good performance that allows training in light computers.
However, ELF was developed before the release of more
modern RTS training environments, such as the StarCraft II
Learning Environment (SC2LE) released by Blizzard
Entertainment and DeepMind [7], and therefore falls behind
when compared to the diversity of game environments
available in more recent platforms, such as URNAI.

Arena [11] is a toolkit for multiagent RL solutions that
requires customizing observations, rewards and actions for
each agent, changing cooperative and competitive
interaction [13]. It provides a novel modular design in
which different interfaces can be concatenated and
combined, extending the OpenAI Gym Wrappers concept to
multiagent scenarios such as StarCraft II, Pommerman,
ViZDoom, and so on. Arena is one of the existing solutions
that comes closest to the solution proposed in this paper. A
drawback to Arena, however, is that it has not yet been
published. Therefore, the scientific community is not
currently able to experiment with this toolkit.

III. URNAI ARCHITECTURE

URNAI’s main goal is to provide a toolkit solution that is
able to make implementation and testing of DRL agents
easier, as well as out-of-the-box wrappers and tools that fit
many different game environments. The general idea of the
toolkit is to propose a modular architecture composed of
interconnected components that can be easily replaced. This
architecture features a layered design connecting high-level
external components, such as game environments, to
low-level external components, such as DRL libraries.

A. Layers
URNAI’s architecture consists of three main layers:

Libraries, Core and Environments (see Fig. 1). The Libraries
layer and the Environment layer are interfaces for external
components, while the Core layer is composed of all the
structures needed to control a RL Agent..

URNAI was designed to be as modular as possible. That
is why the Core layer has many different generalized
structures that exchange data with each other. This gives
greater flexibility for researchers who want to quickly
iterate through different training setups.

● Layer 1: Libraries

DRL libraries are tools used to code AI models. A model
is a memory structure that rules AI reasoning as well as its
learning algorithm. This happens because, in most
circumstances, a library is used to associate a learning
algorithm to a memory structure. As an example, we can
highlight Keras and PyTorch. If we build a memory
structure, such as a Deep Neural Network (DNN) [20],
using such Machine Learning libraries, they will make calls
to functions provided by their own learning algorithm. So,
we cannot, in general, separate the algorithm from the
memory structure. That is why the model is a component
inside URNAI’s architecture that is designed to encapsulate
memory structure and learning algorithm.

In the Model component, the memory can be anything,
from relatively simple structures, such as tabular solutions
controlled by Tabular Q-learning methods [8], to more
complex ones, such as DNN solutions controlled by Deep
Q-learning methods [9].

● Layer 2: Core

The Core of URNAI was derived from the workflow of a
typical DRL scenario. In a typical use case, an Agent selects
actions by using a DRL Model that performs in the
Environment. The DRL cycle procedure is performed as
follows: (1) from an initial State, the Agent uses the DRL
Model to select an Action and carries it out in the
Environment; (2) an interpreter receives the result of the
action taken, leading the Environment to the next State and
producing a positive or negative Reward; (3) the Agent
sends this data to the DRL Model to learn from its
experience. The DRL cycle procedure continues to repeat
these steps until the goal is reached or a certain step limit is
exceeded.

Following the DRL cycle and its structures, several
components were designed as part of URNAI’s architecture
as abstract classes. All of them are tied together by different
methods, defining a communication protocol among Agent,
Model and Environment, as shown in Fig. 1.

In Fig. 1, we have all components that are responsible
for the Agent’s workflow. These are their definitions:

● Model: Memory structure that rules AI reasoning,
controlled by a DRL Method (or Algorithm) that is
responsible for updating it. It attempts to learn a
policy in order to be able to properly select actions
for an Agent according to its situation. Any deep

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 374

memory structures can be designed here, such as a
DNN, as well as other simpler memory structures;

● Reward: Reward Function that determines the
feedback (rewards and punishments) received by the
Agent when it selects actions using a Model;

● State: State wrapper to the environment
observation. Depending on the problem at hand, it
might be advantageous to represent the environment
under different perspectives, filtering out irrelevant
information that the Agent does not need in order to
select appropriate actions;

● Action: Action wrapper to tell the Agent which
actions it can select to perform in the environment at
any given moment. For example, there are scenarios
in which the Agent is unable to perform some
actions, so the Action Wrapper is responsible for
controlling this in order to make these actions
unavailable, simplifying the learning process and
making it more likely to be successful. Also, the
Action Wrapper may be used to build high-level
abstractions to simplify large action spaces (such as
the ones present on RTS games, like Starcraft);

● Agent: Component that joins the Model, State
Wrapper, Action Wrapper and Reward Function.
The Agent is one of the most central pieces of
URNAI’s DRL cycle. It exchanges data with the
Model and the Trainer, requesting for actions from
the Model and sending them to the Trainer, always
applying the abstractions set up within the
Wrappers. The Agent also calls the Model’s
learning method whenever a learning cycle is
completed;

● Trainer: Component responsible for making the
interaction between an Agent and the Environment.
Here is where the whole training loop occurs, since
it manages the exchange of data between the Agent
and the Environment, as well as handling the
amount of game matches that the Agent will be
trained for. Another important role of the Trainer is
to transfer the training data to the Statistics
component. So that graphs can be automatically
generated by tracking important training data;

● Statistics: Component that can be used to store
relevant training data. It generates text-based reports
and uses that to create graphs showcasing the
evolution of important data, such as the average
agent reward, the average win rate, the amount of
each action being used in every game, etc., all of
that throughout training;

● Persistence: Component used to store training data
on the disk. It allows the persistence of the Agent to
the media, allowing it to be transferred between
computational nodes. It is specially useful when
using the toolkit in the cloud or in supercomputing
environments, since they are headless environments
and the agent model is usually downloaded to be
tested on systems with graphical interfaces;

● Environment Wrapper: Wrapper for an instance
of a supported game environment. It is important to
note that URNAI leans heavily on the environment
structure standardized by OpenAI’s Gym.
Therefore, the Environment Wrappers are mostly
used to standardize function calls to all foreign

environments and bridge the gap between any game
environment that may differ from Gym’s structure.

All components exposed above are designed as template
classes that have all the required abstract methods for the
architecture to function. Beyond the base template classes,
that should serve as guidelines for the development, URNAI
comes with a serie of out-of-the-box action, reward and
observation wrappers, as well as many algorithms, such as
Deep Q-Network (DQN), Double Deep Q-Network
(DDQN), Policy Gradient (PG) and Tabular Q-Learning.

Fig. 1. URNAI architecture is composed of three main layers. From the
lower level to the higher level, we have the following: Libraries layer, Core
layer and Environments layer.

The out-of-the-box nature of these wrappers allows users
to assemble different configurations for reward functions,
action spaces and state observations in order to more
quickly iterate through different possibilities while testing.

Currently, URNAI supports one out-of-the-box
Environment Wrapper for each one of the supported game
environments. As said before, these wrappers bridge the
connection between external game environments and
URNAI, generally just conveying all raw information that
the game sends back.

● Layer 3: Game Environments

The high level layer of the architecture is composed of
Game Environments. A Game Environment is any platform
that has an interactive interface, allowing users to change
the environment, and also has some sort of feedback on
those changes. Game Environments for DRL algorithms are
generally prepared to be used by AI Agents, and often have
Application Programming Interfaces (API) that integrate
them to programming languages, making the process of
interpreting the information to and from the game easier.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 375

A general requirement of Game Environments for DRL
is that agents need to be able to affect the environment, and
that generally comes as a set of possible actions in the game,
such as moving left or right. Another common feature of
Game Environments is that they return some sort of
observation after an action is taken, representing the state of
the game at a given moment and serving as a feedback to
the agent. This observation can consist strictly of game
scenario data or other kinds of data such as end of the game
status, agent score and so on.

As seen previously, the connection between URNAI and
Game Environments is bridged by Environment Wrappers.
To do that, the Environment Wrappers pass to the
environment the actions taken by the agent, and then receive
an observation back. URNAI’s structure requires that the
Environment Wrapper returns to the agent three pieces of
data: an environment observation, a reward representing
whether the agent has won the match, and a flag showing if
the game has ended. If the game environment does not send
back all these pieces of data by default, it is in charge of the
Environment Wrapper to interpret the observation and
create them.

B. Documentation
The toolkit documentation is available at URNAI’s

github repository [5]. It is composed of four main parts:
README.md, generated docs, diagrams and results.

README.md is a file in which one can find an overview
of URNAI toolkit. How to install it, how to use command
line tools, dependencies, supported Game Environments and
so on. In generated docs there is a documentation for every
class implemented in the toolkit, following the main
directory structure. In diagrams, one can see a graphical
view of URNAI’s structure. Finally, in results, one can find
statistics for some experiments done by using the toolkit.

IV. LIBRARIES AND GAME ENVIRONMENTS LINKED TO
URNAI

In order to make a multi-game toolkit available for DRL
experimentation, URNAI needs to support the most recent
and robust technologies used by the Machine Learning
community. This is achieved in two different ways. First of
all, by integrating state-of-the-art Machine Learning
libraries to URNAI’s repertory. Secondly, by adding support
to modern and generalistic game environment toolkits, as
well as more complex and detailed game environments, as
detailed below.

A. Libraries
Currently, URNAI has three Machine Learning libraries

already integrated to it:

● TensorFlow: TensorFlow [3] is an open software
library that serves as a broad platform for machine
learning. It has a broad and flexible ecosystem of
resources that allows researchers to push the
state-of-the-art in machine learning;

● Keras: Keras is a library that builds upon the
capabilities of TensorFlow and simplifies much of
its workflow, allowing for easier implementation
and iteration of machine learning algorithms. Even
though Keras has high-level abstractions to
simplify machine learning solutions, it also allows

for low-level development to experiment research
ideas;

● PyTorch: PyTorch [23] is a Python package that
allows to create and train DNN using different
methods such as the ones present in Tensorflow.
Those data structures are built using a Tape-Based
Autograd System, which allows the DNN to be
more flexible and dynamic when compared to other
methods.

B. Game Environments
URNAI currently supports several game environments

(see Fig. 2):

● Gym: A toolkit developed by OpenAI that consists
of a collection of several environments that share a
common interface, enabling the use of generalized
algorithms to solve them [2]. Gym’s environments
are generally very simple, consisting of basic
mini-games or classic control problems, and run
very efficiently, which makes it a very useful tool
for testing Machine Learning algorithms;

● StarCraft II: StarCraft II is a commercial
real-time strategy (RTS) game. Due to the very
high complexity, unpredictability, strategic and
real-time nature of StarCraft matches, it has
emerged as a grand challenge for AI research [7].
Following the release of PySC2, a DeepMind’s
open-source Python library that gives access to the
game’s internal information, researchers are able to
experiment algorithms, directly interacting with the
game environment. So, StarCraft II (SC2) has
become much more accessible to the wide research
community. As mentioned before, it is a very
complex environment that poses hard challenges
for RL, which is a very interesting research goal.
However, a downside to SC2 is it’s
computationally demanding nature, since it is a
full-fledged game. It generally requires the
employment of supercomputing with multiple
GPUs to achieve reasonable training speeds;

● VizDoom: VizDoom is a platform developed to
allow the training of AI agents within the iconic
1993 computer game DOOM [6]. VizDoom is
primarily focused on computer vision based RL,
since it represents the information from the game
as series of images. Consequently, this
environment is an interesting option to URNAI’s
repertory, since PySC2 does not represent the game
as an image, and neither do most of Gym’s
environments;

● DeepRTS: DeepRTS is a game environment
developed to mimic a RTS game, such as StarCraft
II and so on [4]. Its focus is to provide an
environment for training and experimenting DRL
agents. DeepRTS reaches much better performance
than a full-fledged game, achieving up to seven
million frames per second. Therefore, DeepRTS is
an interesting environment to have as an option in
URNAI, since it can be viewed as a simplified and
much more performant counterpart to StarCraft II,
allowing researchers to experiment with both
environments in several different ways.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 376

Since these environments can be quite different from
each other, URNAI provides preset Agents, State
Representations, Reward Functions and Action Wrappers
for each of them.

The Agent module has two preset classes: a generic
agent that works on Gym, VizDoom and DeepRTS, and a
second agent that is designed specifically for StarCraft II.
Similarly to the Environment Wrappers, these agents are
generic, and hardly need to be tinkered with, as they fulfill
all basic needs of a RL Agent, without inferring any abstract
view of the data.

Fig. 2. Game Environments supported by URNAI. Top Row (left to right):
Gym, StarCraft II. Bottom Row (left to right): VizDoom, DeepRTS.

To affect the way the agents perceive the environment, a
State Builder is used to represent a State (see Fig. 1). Each
supported environment has at least one state builder related
to it. StarCraft II, for instance, has three different
out-of-the-box State Builders, each of them with a different
approach to representing the environment.

Similarly to the State Builders, URNAI provides at least
a Reward Builder for each game environment. StarCraft II
and VizDoom have multiple builders. These Reward
Builders define how an Agent can interpret the current state
of the game, directly affecting the training.

Finally, the last type of wrapper provided by URNAI is
the Action Wrapper, used to determine which actions must
be available to the Agent at any given moment. Each game
environment has at least an Action Wrapper implemented.
StarCraft II has four Action Wrappers and VizDoom has
two of them. StarCraft II also has a generalistic wrapper
implemented for each playable race of the game, so that
researchers can either use these generalistic wrappers as
they are, or as a base to implement more specific wrappers
that fit their research purposes.

V. SETTING UP URNAI TO DO EXPERIMENTS
Before experimenting with URNAI, there are some

instructions to follow and some setting up to be done. A first
and preliminary step towards training is deciding which
Learning Model, Agent and Environment to use. As
explained before, URNAI comes with many out-of-the-box

wrappers. Therefore, it is recommended that users visit the
documentation on github in order to see a more in-depth list
of all available components, such as agents, environments,
reward functions, algorithms, etc.

After components are selected, the next step is
effectively setting up each component. Instructions on how
to configure the Environment Wrappers are very specific to
each game environment, and can be further verified in the
documentation. Configuring Learning Models, however, is a
much more generic task, in which URNAI users can specify
most of the usual parameters in any DRL algorithms, such
as number of layers, type of layers, number of neurons per
layer, learning rate, exploration parameters etc. Lastly,
configuring the Agent is a quite standard procedure, and
only requires the user to select an action wrapper, a state
builder and a reward builder.

The last step before proper training consists in selecting
the training parameters, which are defined by the Trainer
component. These parameters are related to the number of
episodes the agent will train, the maximum number of steps
the agent can act in each episode, the frequency of saving
the Learning Model, the saving path, and so on.

In the following subsections, there is a brief explanation
of the main features of each URNAI component, as well as
any additional information that may aid users in
understanding URNAI’s structure and its use.

A. Selecting algorithm
Currently, URNAI has four Learning Models

implemented: Q-Learning (tabular), Deep-Q Learning
(fully-connected neural networks), Double Deep-Q
Learning and Policy Gradients.

Those different kinds of models are present to allow the
user to choose which is the most suited for its context. For
example, Tabular Q-Learning is an excellent choice to be
used in simple environments, such as the ones presented in
Gym’s collection. For those games, the tabular model is not
only faster to train, but it is more stable to learn an usable
policy. On the other hand, all the other environments require
a more robust learning model. Deep-Q Learning (DQL) and
Double Deep-Q Learning (DDQL) are examples of such.
These algorithms use DNN as memory representation,
allowing the training of the agent on more complex
environments, with bigger state spaces.

Alongside that, a component called Model Builder is
provided. This component helps the user dynamically build
different structures of a Neural Network, by defining the
amount of layers, type of layers, number of neurons and any
other information necessary to the creation of a functioning
Model. An interesting aspect of the Model Builder is that its
main structure is defined as a Python dictionary, which
allows users to build Learning Models without having much
experience in programming. Another possibility, considered
to be easier, is to instantiate a Model Builder object in
Python and call its methods to add new layers. So, it
dynamically builds the dictionary for the user.

B. Selecting game environment
As mentioned before, there are four main environments

currently supported by URNAI: Gym, Starcraft II, VizDoom
and DeepRTS. After an environment is selected, the user

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 377

needs to access the class of the Environment Wrapper
selected, or any of the examples available in the repository,
in order to instantiate their chosen environment.

C. Selecting Agent
There are two main agents in URNAI. For most training

scenarios, a user can adopt a GenericAgent, except for
Starcraft II that needs to use the SCIIAgent, designed to
accommodate for some differences in the SC2 environment.

D. Selecting Action Wrapper, State Builder and Reward
Function
Generally speaking, for each environment there are

many different ways an agent could interact with it, and that
is specially true for more complex environments such as
StarCraft II or VizDoom. In order to give users some
flexibility while training their agents, a few Action
Wrappers are available for each environment. Some Action
Wrappers can be used in any configuration of the game,
while others are supposed to be used with some restrictions,
such as in a special map, or in a specific game mode.

For example, there are classes made to be used with a
specific Starcraft II playable race, or even in a specific
scenario of VizDoom. More details about each one of these
specifications can be found by referring to URNAI’s
documentation.

The same rules are applied to State Builders and Reward
Functions. There are generic ones made to work with any
context of a game. But there are also ones tailored to more
specific scenarios or approaches to RL.

VI. START TRAINING IN URNAI
After selecting all components of the training, the agent

(with all its parts) and the environment, we will be able to
start training. In this section we describe two ways to do
this: coding directly in Python or using JSON files. At the
end of the section, we have a special subsection that
describes how to run URNAI on remote machines, such as
GPU supercomputers.

A. Python
One way for using the toolkit is importing it in a Python
script and joining all the components manually. In general,
what it is needed to do is to instantiate each object with all
of the chosen parameters and then ask the Python interpreter
to run the script. Users can refer to the source code on
Github to see examples of premade scripts called Python
Solve Files, available in the solves directory. Generally,
there is at least one solve file for each Game Environment.

B. JSON
JSON files are also supported by URNAI, being useful

for users who are not familiar with Python or want a more
direct way to select components and parameters. Some
training examples using JSON Solve files are available in
the solves directory. Users are encouraged to use these files
as a base when creating their own JSON Solve files.

To start training using JSON files, the user can call
URNAI from the command line, like so:

URNAI train --json-file file.json

C. Tuning learning parameters
When the training script is ready, in Python or JSON,

the next step is tuning learning parameters, which is just a
matter of swapping training components and changing
parameters’ values. For instance, if the user wants to change
the reward function, he could swap the Reward Builder.
Moreover, if he wants to change the DNN structure, he
could update the model parameters and so on. This process
is often done after an initial training, to accommodate the
results, try and improve the model.

D. Supercomputing
In the current version, URNAI uses Keras as the main

library for DRL. This means that Tensorflow is used to train
DNN models, since it is a Keras dependency. These libraries
make URNAI naturally able to run different setups, from a
computational power perspective, such as in supercomputers
on cloud services or in remote supercomputing systems.

One way that was found to be reliable in making URNAI
run in supercomputers was to use container managers to
simulate operating systems, consequently removing errors
related to differences in system version, libraries and
dependencies. A recipe to build a container that runs
URNAI, using the Singularity container manager, is
provided in the source code as an example.

VII. EXPANDING URNAI

A. Adding new libraries by implementing new models
In the previous section, we pointed out that the models

of the current URNAI version are written using Keras.
However, this does not mean that only this library could be
used to code models.

The main goal of URNAI is to be flexible. So, adding
new learning algorithms and libraries should be an easy task
to do. That is why the Model has a set of abstract methods
that can be implemented according to each required external
library. These methods can be found in the ABModel class,
which all models should inherit from.

In general, the main focus of a Model is on the learn()
method. It receives a State, Action, Reward and State tuple.
Thus, it should internally follow its own learning algorithm
to improve the model’s decision making process. So, in
theory, any Machine Learning Library could be used here,
the only limitation being that it must be Python compatible.

We encourage and invite any researchers interested in
this topic to contribute to URNAI’s repertory of learning
models, by coding any new model they are interested in.
Since URNAI’s code is hosted on github, any developer can
send a push request and collaborate.

B. Adding new game environments
To add new game environments, we can use the same

idea described in the previous section. The Env class
implements a series of abstract methods used by all
Environment Wrappers. So, all that is needed to add a new
game environment is to create a new class that inherits from
Env and then implement its methods.

The main focus of an environment is on its step method.
Here is where the connection with the game happens, since
the environment wrapper receives an action as a parameter

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 378

of this function and then sends it to the real instance of the
game. After delivering the action to the instance, the
wrapper usually receives a reward and a state (this heavily
depends on the game being adapted), which should be
returned to the agent.

This is the main functionality of the step() method, but it
may vary from an environment to another. For instance,
before returning the state to the agent, the DeepRTS
wrapper inserts game data in the object, such as player
status, units, and so on, since the main state object of the
game is just a map configuration.

It is important to note that the structure and functionality
of URNAI’s Environment Wrapper leans very heavily on
OpenAI Gym’s environment definition. So, if a new
Environment Wrapper implementation is turning out to be a
bit more complex than anticipated, it might be useful to
check out the documentation and try to understand how the
environment transfers data. So, URNAI’s Environment
Wrapper structure basically extends Gym’s structure,
opening the door to implementing other game environments.

VIII. USAGE EXAMPLE
In this section, a practical example of using URNAI will

be discussed, going through the same steps detailed on
sections V and VI. The focus here is to show a step-by-step
guide on how to set up a training example from beginning to
end, showcasing all of the components needed and
presenting their real names.

A. Choosing Training Components
As mentioned before, the first step is to select the

components required to prepare the training. In this practical
example, we will be trying to make an agent learn how to
defeat the Starcraft II default AI in the very-easy level. The
map chosen to train on is the Simple64 map, provided by
DeepMind’s PySC2 library, and the race of our agent is
going to be Terran.

So, URNAI has two main core parts: Agent and
Environment. If we start on the agent, we can see on the
documentation that we need to choose a State Builder, a
Learning Model, a Reward Function and a Action Wrapper.
For each one, there will be a set of classes that can be used.
Below will be presented the classes selected:

● State Builder: since we are playing on the
Simple64 map, the state builder will be
Simple64GridState;

● Model: the model used here is a DNN controlled
by a Double Deep-Q Learning algorithm, then the
class is a DDQNKeras;

● Reward Function: there are several possibilities to
reward the agent on this map, but the one that
works best on this context is KilledUnitsReward;

● Action Wrapper: there is a generalized action
wrapper for the Terran race, called
TerranWrapper. However, since the Simple64 map
is very simple and small, a simpler version of the
Terran wrapper will be used:
SimpleTerranWrapper;

In addition to that, there are the Agent and Environment
classes. Starcraft II, for instance, needs its specific agent

class called SC2Agent. For the Environment Wrapper, the
proper class for StarCraft II is called SC2Env.

B. Coding The Training File
Once all required components are selected, it is now

time to assemble them together in either a Python file or a
JSON file in order to start training. This section will present
a brief explanation and code snippets of these files, but for a
deep dive in them we recommend that users visit the source
code on the github repository. So, in Python, we instantiate
the environment like in Fig. 3.

env = SC2Env(map_name="Simple64", render=False,
step_mul=16, player_race="terran",
enemy_race="random", difficulty="very_easy")

Fig. 3. Instantiating Starcraft II environment wrapper.

Then we instantiate the Action Wrapper and the State
Builder in Fig. 4.

action_wrapper = SimpleTerranWrapper()

state_builder = Simple64GridState(grid_size=4)

Fig. 4. Instantiating Starcraft II Simple Terran Action Wrapper and Simple
64 State Builder.

Following, we will use the ModelBuilder by quickly
creating a DRL Model with two hidden fully connected
layers, each one of them with 50 nodes. Beyond that, we
will be using the state builder to get the dimension of our
input layer, and the action wrapper to get the output
dimension, as we can see on Fig. 5.

helper = ModelBuilder()

helper.add_input_layer(int(state_builder.get_state_d

im()), nodes=50)
helper.add_fullyconn_layer(nodes=50)
helper.add_output_layer(action_wrapper.get_action_sp

ace_dim())

Fig. 5. Using ModelBuilder to generate DNN.

We can then instantiate the Learning Model as we do in
Fig. 6. In this particular case, the best training setup tuned
the learning rate to 0.1%, the rate of decay of epsilon greedy
strategy to 0.001% at every game step, and a maximum
memory of 100,000 tuples, as well as a few other details that
can be further understood by reading the source code and
the documentation.

dq_network = DDQNKeras(

action_wrapper=action_wrapper,

state_builder=state_builder,

build_model=helper.get_model_layout(), gamma=0.99,
learning_rate=0.001, epsilon_decay=0.99999,
epsilon_min=0.005, memory_maxlen=100000,
min_memory_size=2000)

Fig. 6. Instantiating the Double Deep-Q Network Model.

After that, we can instantiate the Agent itself, like in Fig.
7, passing the Learning Model and the Reward Builder
(KilledUnitsReward).

agent = SC2Agent(dq_network, KilledUnitsReward())

Fig. 7. Instantiating Starcraft II Agent.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 379

Finally, we will instantiate the Trainer, as seen in Fig. 8,
and prepare it for training. Some parameters required for
that are the saving directory, the file name, the frequency at
which the trainer will save the Agent to disk, the number of
episodes for training and playing, and the maximum number
of steps in each game episode.

The Python file is finally ready for starting training. A
brief explanation on how to run this file is given in the next
subsection. Some programming details were omitted from
this guide for simplicity sake, but the full file can be found
in the source code under the solves directory as
solve_simple64_veryeasy.py.

trainer = Trainer(env, agent,

save_path='urnai/models/saved',
file_name="terran_ddqn_vs_random_v_easy",
save_every=100, enable_save=True,
relative_path=True)
trainer.train(num_episodes=3000, max_steps=1200)
trainer.play(num_matches=100, max_steps=1200)

Fig. 8. Instantiating Trainer, which is responsible for joining the Agent and
the Environment Wrapper.

An alternative to Python files is to create a JSON file.
The steps to code this type of file are very similar to the
ones exposed before, and mainly consist in going from
module to module and declaring each one with the proper
parameters. Therefore, we will not be showing code
snippets of this process since a JSON file can become quite
extensive, and the parameters chosen are exactly the same
as the ones shown on the Python snippets. So, if a user
wishes to see the full file, they should refer to the source
code under the solves directory, as
solve_simple64_veryeasy.json.

In this sense, there is a small difference in JSON
parameters that should be clarified. When declaring the
parameters of the build model, we should explicitly write
the dimensions of the input and output layer, as it can be
seen in Fig. 9. An easy way to do that is to check our State
Builder and Action Wrapper, respectively, to see the size of
their output. This process can be seen below, in which the
size of input layer is 54, due to the size of our State
Builder’s output, and the size of output layer is 34, due to
the size of our Action Wrapper’s output.

"build_model" : [
 {

 "type" : "input",
 "nodes" : 50,
 "shape" : [null, 54]
 },

 {

 "type": "fullyconn",
 "nodes": 50,
 "name": "fullyconn0"
 },

 {

 "type": "output",
 "length": 34
 }

]

Fig. 9. Setupping Double Deep-Q Network in JSON Solve File.

C. Starting Training
Running the scripts created in the last subsection is a

relatively simple task. To do that with the Python file, all
that is needed is to run it with a Python interpreter, like so:

python /your/file/directory/solve_simple64_veryeasy.py.

Running a JSON file is similar, the only difference being
that we need to have URNAI installed as a Python package.
So, we are able to use it in the command line:

urnai train --json-file solve_simple64_veryeasy.json

from jsontrainer import JSONTrainer

trainer =

JSONTrainer("your/file/directory/solve_simple64_very
easy.json")
trainer.start_training()

Fig. 10. Using JSON Trainer in a Python Script.

Furthemore, there is a workaround that allows users to
run a JSON file without installing the toolkit to their Python
environment, which could be useful in situations where
users have limited access or permission. This involves
creating a Python script importing a JSONTrainer class and
instantiating a trainer based on a JSON file (see Fig. 10).

IX. EXPERIMENTS CARRIED OUT AND RESULTS OBTAINED
The goal of this section is to present the results obtained

with an agent trained using URNAI. It is highlighted that
our objective here is not to create a state-of-the-art agent
that defeats pro-level players of Starcraft II. Instead of that,
we will demonstrate that it is possible to run an agent with
the toolkit and generate some statistical results to see how
well the agent is doing during the training and playing steps.

A. Training Step
The agent trained for 3000 episodes during the learning

step. It started by randomly trying all of the actions
available in its Action Wrapper. This behavior can be
verified at the first 200 episodes in the graph of Fig. 11. The
agent has a peak in average reward at the beginning, when
there are a lot of random variations, and then it starts to fall
until around episode 600. After that, it starts to learn a good
strategy and raises the average reward.

Fig. 11. Average reward of the agent by episode.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 380

There are some other graphs that we can use to observe
the agent’s behavior. In Fig. 12, it is presented that the agent
takes fewer and fewer steps to end the game as learning
progresses. The number of steps is the amount of actions the
agent takes to end an episode (game). If we only consider
this figure, this would mean that the agent could be losing
quickier as time went on, but Fig. 11 and Fig. 13 show the
opposite.

Finally, in Fig. 13 we can see the average winning rate
of the agent. The more he wins, the higher the average is.
By the end of the training, the agent winning percentage is
in the 50% range against his opponent.

Fig. 12. Number of steps the agent has taken to end training episodes.

Fig. 13. Average winning rate of the agent.

By analyzing all these three figures, we can see that the
agent learns how to win and even how to win quicker. This
shows that it might be using some rushing strategy, which
means that it tries to attack as soon as possible, allowing it
to surprise the enemy before it can create an army or even
grow an economy.

B. Playing Step
After the training ends, the agent’s knowledge can be

evaluated by leading it to play episodes without learning. In
this subsection, we show the evaluation results for the agent
playing 100 episodes.

Fig. 14 shows how reward tended to fall during this
evaluation session. At first glance, the agent might seem to
be losing, but if we compare the average with the one
presented on Fig. 11, we can see that it is much higher. So

the agent is still winning, but the average is falling since its
winning rate is not 100%.

We can see that the winning rate has the same trend as in
average reward. It falls because the enemy is not winning
constantly, but the winning rate is still high, around 84%.
This can be checked by looking at Fig. 15, in which we
might verify that the winning percentage is much better than
the rate obtained during training.

Finally, Fig. 16 shows the agent is still trying to win as
fast as possible, even quicker than while it was training. The
average number of steps rises during a hundred evaluation
episodes, going up to 800 steps, but this value is still lower
than the training average (900 steps).

Fig. 14. Agent’s average reward when evaluating playing episodes.

Fig. 15. Agent’s winning rate when evaluating playing episodes.

Fig. 16. Agent’s average number of steps to end episodes.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 381

We can conclude the agent was able to develop a good
strategy in the super easy AI level of Starcraft II. It might be
a rushing strategy, since the average number of steps tended
to be low at training stage and is even lower in evaluation.
But it is not the best strategy because we can see that the
winning rate while training was around 50%, and it tended
to fall while evaluating the agent.

X. CONCLUSIONS AND FUTURE WORKS
This paper introduced URNAI, a new toolkit that

facilitates the training and evaluation of AI into multiple
game environments. The main feature of the toolkit is its
architecture, which allows the configuration of multiple
learning scenarios and agents, as well as the integration of
several games and new libraries for DRL algorithms.

We also showed how to set up and use the toolkit, as
well as how to do an experiment that showcased some of its
capabilities. In the experimentation section, an agent was
able to learn a good strategy against the very-easy AI
difficulty of StarCraft II. This demonstrates that URNAI is
currently functional and can be used for various types of
learning experimentation settings.

However, since this is URNAI’s first version, it is clear
that there are several improvements that could be done. So,
the next step in URNAI’s development is to provide other
learning models, libraries and games. Examples of such
could be the Asynchronous Advantage Actor Critic (A3C)
algorithm as a new model, Theano as a new library, and the
Arcade Learning Environment (ALE) [1] as a new game
environment.

Also, some aspects of the architecture could be
improved, such as modules to standardize environments’
states and actions, and the possibility to inherit the toolkit to
use some of its services, which could lead to it eventually
being transformed into a framework. Additionally, learning
scenarios could be included to make training easier for users
who want to configure only the learning model parameters,
without worrying about action wrappers, reward functions,
etc.

Finally, we invite researchers and developers to
contribute to URNAI’s repository [5] in order to add new
features, such as new models and environments, or just
improving its architecture. Since it is hosted in github,
anyone willing to collaborate can send a pull request and
help improve this work.

ACKNOWLEDGMENT
We would like to thank the National Council for

Scientific and Technological Development (CNPq) for
providing scientific research scholarships that made this
endeavor possible. We would also like to thank the High
Performance Computing Center of the Federal University of
Rio Grande do Norte (NPAD/UFRN) for providing the
infrastructure and support necessary to run our experiments
in a GPU supercomputing environment.

REFERENCES
[1] M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowl-ing. The Arcade

Learning Environment: An Evaluation Platform for General Agents.
In International Joint Conference on Artificial Intelligence, 2015.

[2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., & Zaremba, W. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for
large-scale machine learning. In12thUSENIX symposium on
operating systems design and implementation (OSDI 16), pages
265–283, 2016.

[4] P. A. Andersen, M. Goodwin, O. C. Granmo. Deep RTS: a game
environment for deep reinforcement learning in real-time strategy
games. In 2018 IEEE conference on computational intelligence and
games (CIG) (pp. 1-8). IEEE, 2018..

[5] URNAI Tools Repository. Federal University of Rio Grande do
Norte, 2020. Available in:
https://github.com/marcocspc/URNAI-Tools.

[6] M. Kempka, M. Wydmuch, G. Runc, J. Toczek & W. Jaśkowski,
ViZDoom: A Doom-based AI Research Platform for Visual
Reinforcement Learning, IEEE Conference on Computational
Intelligence and Games, pp. 341-348, Santorini, Greece, 2016
(arXiv:1605.02097).

[7] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. Vezhnevets, M.
Yeo, A. Makhzani, H. Kuttler, J. Agapiou, J. Schrittwieser, J. Quan,
S. Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D.
Silver, T. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, R. Tsing. StarCraft II: A New Challenge for
Reinforcement Learning. arXiv preprint arXiv:1708.04782, 2017.

[8] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8(3-4):279–292,1992.

[9] Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M.
G.Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostro-vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H.
King,D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis.
Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[10] Y. Tian, Q. Gong, W. Shang, Y. Wu, C. Zitnick. “ELF: An Extensive,
Lightweight and Flexible Research Platform for Real-time Strategy
Games”. arXiv:1707.01067, 2017.

[11] Q. Wang, J. Xiong, L. Han, M. Fang, X. Sun, Z. Zheng, P. Sun, Z.
Zhang1. "Arena: a toolkit for Multi-Agent Reinforcement Learning".
arXiv:1907.09467, 2020.

[12] R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, 1st ed. Cambridge, MA, USA: MIT Press, 1998.

[13] P. B. S. Serafim, Y. L. B. Nogueira, C. A. Vidal, J. B. Cavalcante
Neto. Evaluating competition in training of Deep Reinforcement
Learning agents inFirst-Person Shooter games. Proceedings of
SBGames 2018, 2018.

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis.
Mastering the game of Go without human knowledge. Nature, v.550,
p.354-359, 2015.

[15] G. Tesauro. Programming Backgammon Using Self-teaching Neural
Nets. Artificial Intelligence, 134:181-199, 2002.

[16] M. Laoan. Deep Reinforcement Learning Hands-On. Packt
PUblishing, 546p, 2018.

[17] S. Ontañon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, M.
Preuss. A Survey of Real-Time Strategy Game AI Research and
Competition in StarCraft. IEEE Transactions on Computational
Intelligence and AI in Games, v.5, n.4, p.1-19, 2013.

[18] G. Robertson, I. Watson. A Review of Real-Time Strategy Game AI.
AI Magazine, v.35, n.4, p.75-104, 2014.

[19] M. Buro. Real-Time Strategy Games: A new AI Research Challenge.
In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, Acapulco, Mexico, 2003.

[20] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press,
2016.

[21] D. Churchill. A history of starcraft ai competitions. AIIDE Starcraft
AI Competitions, 2016.

[22] P. Molino, Y. Dudin, S. S. Miryala. "Ludwig: a type-based
declarative deep learning toolbox". arXiv preprint arXiv:1909.07930,
2019.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In: Advances in Neural
Information Processing Systems 32 (NIPS 2019), p.8026-8037, 2019.

SBC – Proceedings of SBGames 2020 — ISSN: 2179-2259 Computing Track – Full Papers

XIX SBGames – Recife – PE – Brazil, November 7th – 10th, 2020 382

