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Abstract—In the last decade, several game environments       
have been popularized as testbeds for experimenting       
reinforcement learning algorithms, an area of research that        
has shown great potential for artificial intelligence based        
solutions. These game environments range from the simplest        
ones like CartPole to the most complex ones such as StarCraft           
II. However, in order to experiment an algorithm in each of           
these environments, researchers need to prepare all the        
settings for each one, a task that is very time consuming since it             
entails integrating the game environment to their software and         
treating the game environment variables. So, this paper        
introduces URNAI, a new multi-game toolkit that enables        
researchers to easily experiment with deep reinforcement       
learning algorithms in several game environments. To do this,         
URNAI implements layers that integrate existing      
reinforcement learning libraries and existing game      
environments, simplifying the setup and management of       
several reinforcement learning components, such as      
algorithms, state spaces, action spaces, reward functions, and        
so on. Moreover, URNAI provides a framework prepared for         
GPU supercomputing, which allows much faster experiment       
cycles. The first toolkit results are very promising. 

Keywords—game environment, toolkit, deep reinforcement     
learning, experimentation setup 

I. INTRODUCTION 
Game environments have become very popular over the        

last decade as testbeds for experimenting Reinforcement       
Learning (RL) [12][15] and Deep Reinforcement Learning       
(DRL) [16][14] algorithms, since the amount of labeled        
training data available for training Artificial Intelligence       
(AI) models is nearly infinite, low-cost, replicable, and        
easily obtained at a much higher rate than in real-world          
experiments. In addition to that, the combinatorial explosion        
of the problems treated by several games leads to huge state           
and action spaces, being natural and reasonable candidates        
to be explored to design innovative AI solutions [7]. 

In order to contribute in this direction, some        
international conferences, such as the annual IEEE       
Conference on Games (CoG) and the annual AAAI        
Conference on Artificial Intelligence and Interactive Digital       
Entertainment (AIIDE), hold several Game AI competitions       
[21] that are a great way to share practical solutions for hard            

real-world problems simulated by game environments      
[17][18]. However, in order to experiment an algorithm in         
each of these game environments, researchers need to        
prepare all the settings for each one. This task is very time            
consuming since it entails integrating the game environment        
to the researcher’s software and treating game environment        
variables in order to set up the system with a particular           
learning scenario and evaluate the system performance [19]. 

For this reason, researchers have tried to develop game         
toolkits in order to make the experimentation task easier         
[1][2]. As an alternative to these game toolkits, this paper          
introduces URNAI, a new multi-game toolkit developed to        
support researchers in the task of setting up their         
experiments with DRL algorithms. The originality of       
URNAI is that it supports multiple game environments and         
multiple DRL libraries by using a layered and modular         
architecture. This simplifies the setup and management of        
several DRL components, such as algorithms, state spaces,        
action spaces, reward functions, and so on. 

This paper is structured as follows. First, section II         
outlines previous work. Next, section III introduces       
URNAI’s layered architecture. Section IV presents the DRL        
libraries and game environments already integrated into       
URNAI. Subsequently, section V explains how to set up         
URNAI in order to do experiments. Next, section VI         
explains how to start a training session with URNAI.         
Section VII describes what needs to be done in order to           
expand URNAI by integrating new DRL libraries or new         
game environments. Subsequently, section VIII describes a       
URNAI example of use. Next, section IX shows URNAI         
performing experiments and presents the results obtained       
with it. Finally, section X concludes with the contribution of          
this paper and outlines a roadmap for future work. 

II. RELATED WORKS 
Open source DRL libraries and toolboxes have been        

recently launched as new options to make training and         
testing of DRL models easier for researchers, developers,        
and even non-experts. Giant companies, such as Facebook,        
Google, Uber and Tencent have invested in the development         
of these kinds of solutions since the area is growing very           
fast and it can be seen as a big bet for the coming years. 
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The main idea is to provide new possibilities for users,          
so that they can concentrate the efforts on making deep          
learning architectures rather than data wrangling, by       
interpreting the prototyping process and streamlining data       
processing. This comes with further advantages for       
non-programmers involving a set of command line utilities        
for training, experimenting models, and gaining predictions.       
These tools often also provide a programmatic API that         
enables users to train and deploy a model with only a few            
lines of code, treating different choices of modeling and         
algorithms that require different observations and actions. 

To support this, OpenAI Gym [2] was one of the first           
solutions that introduced the concept of Wrapper, which can         
be stacked and nested to design environments with different         
observations and actions. This Gym environment is flexible        
and its wrappers are widely used by the RL community. It           
implements several simplified environments, in addition to       
some atari games simulated through the Arcade Learning        
Environment (ALE) [1]. Nonetheless, Gym only focuses on        
the generalization of game environments, and leaves DRL        
implementation, DRL model integration and DRL cycle in        
the user’s hands. 

Facebook ELF [10] implements a highly customizable       
and lightweight real-time strategy (RTS) platform with three        
game environments (Mini-RTS, Capture the Flag and Tower        
Defense). The platform allows both game parameter       
changes and new game additions. The training is deeply and          
flexibly integrated into the environment, with emphasis on        
concurrent simulations. One of its strengths is it has a very           
good performance that allows training in light computers.        
However, ELF was developed before the release of more         
modern RTS training environments, such as the StarCraft II         
Learning Environment (SC2LE) released by Blizzard      
Entertainment and DeepMind [7], and therefore falls behind        
when compared to the diversity of game environments        
available in more recent platforms, such as URNAI. 

Arena [11] is a toolkit for multiagent RL solutions that          
requires customizing observations, rewards and actions for       
each agent, changing cooperative and competitive      
interaction [13]. It provides a novel modular design in         
which different interfaces can be concatenated and       
combined, extending the OpenAI Gym Wrappers concept to        
multiagent scenarios such as StarCraft II, Pommerman,       
ViZDoom, and so on. Arena is one of the existing solutions           
that comes closest to the solution proposed in this paper. A           
drawback to Arena, however, is that it has not yet been           
published. Therefore, the scientific community is not       
currently able to experiment with this toolkit. 

III. URNAI ARCHITECTURE 

URNAI’s main goal is to provide a toolkit solution that is           
able to make implementation and testing of DRL agents         
easier, as well as out-of-the-box wrappers and tools that fit          
many different game environments. The general idea of the         
toolkit is to propose a modular architecture composed of         
interconnected components that can be easily replaced. This        
architecture features a layered design connecting high-level       
external components, such as game environments, to       
low-level external components, such as DRL libraries. 

A. Layers 
URNAI’s architecture consists of three main layers:       

Libraries, Core and Environments (see Fig. 1). The Libraries         
layer and the Environment layer are interfaces for external         
components, while the Core layer is composed of all the          
structures needed to control a RL Agent.. 

URNAI was designed to be as modular as possible. That          
is why the Core layer has many different generalized         
structures that exchange data with each other. This gives         
greater flexibility for researchers who want to quickly        
iterate through different training setups. 

● Layer 1: Libraries 

DRL libraries are tools used to code AI models. A model           
is a memory structure that rules AI reasoning as well as its            
learning algorithm. This happens because, in most       
circumstances, a library is used to associate a learning         
algorithm to a memory structure. As an example, we can          
highlight Keras and PyTorch. If we build a memory         
structure, such as a Deep Neural Network (DNN) [20],         
using such Machine Learning libraries, they will make calls         
to functions provided by their own learning algorithm. So,         
we cannot, in general, separate the algorithm from the         
memory structure. That is why the model is a component          
inside URNAI’s architecture that is designed to encapsulate        
memory structure and learning algorithm. 

In the Model component, the memory can be anything,         
from relatively simple structures, such as tabular solutions        
controlled by Tabular Q-learning methods [8], to more        
complex ones, such as DNN solutions controlled by Deep         
Q-learning methods [9]. 

● Layer 2: Core 

The Core of URNAI was derived from the workflow of a           
typical DRL scenario. In a typical use case, an Agent selects           
actions by using a DRL Model that performs in the          
Environment. The DRL cycle procedure is performed as        
follows: (1) from an initial State, the Agent uses the DRL           
Model to select an Action and carries it out in the           
Environment; (2) an interpreter receives the result of the         
action taken, leading the Environment to the next State and          
producing a positive or negative Reward; (3) the Agent         
sends this data to the DRL Model to learn from its           
experience. The DRL cycle procedure continues to repeat        
these steps until the goal is reached or a certain step limit is             
exceeded. 

Following the DRL cycle and its structures, several        
components were designed as part of URNAI’s architecture        
as abstract classes. All of them are tied together by different           
methods, defining a communication protocol among Agent,       
Model and Environment, as shown in Fig. 1. 

In Fig. 1, we have all components that are responsible          
for the Agent’s workflow. These are their definitions: 

● Model: Memory structure that rules AI reasoning,       
controlled by a DRL Method (or Algorithm) that is         
responsible for updating it. It attempts to learn a         
policy in order to be able to properly select actions          
for an Agent according to its situation. Any deep         
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memory structures can be designed here, such as a         
DNN, as well as other simpler memory structures; 

● Reward: Reward Function that determines the      
feedback (rewards and punishments) received by the       
Agent when it selects actions using a Model; 

● State: State wrapper to the environment      
observation. Depending on the problem at hand, it        
might be advantageous to represent the environment       
under different perspectives, filtering out irrelevant      
information that the Agent does not need in order to          
select appropriate actions; 

● Action: Action wrapper to tell the Agent which        
actions it can select to perform in the environment at          
any given moment. For example, there are scenarios        
in which the Agent is unable to perform some         
actions, so the Action Wrapper is responsible for        
controlling this in order to make these actions        
unavailable, simplifying the learning process and      
making it more likely to be successful. Also, the         
Action Wrapper may be used to build high-level        
abstractions to simplify large action spaces (such as        
the ones present on RTS games, like Starcraft); 

● Agent: Component that joins the Model, State       
Wrapper, Action Wrapper and Reward Function.      
The Agent is one of the most central pieces of          
URNAI’s DRL cycle. It exchanges data with the        
Model and the Trainer, requesting for actions from        
the Model and sending them to the Trainer, always         
applying the abstractions set up within the       
Wrappers. The Agent also calls the Model’s       
learning method whenever a learning cycle is       
completed; 

● Trainer: Component responsible for making the      
interaction between an Agent and the Environment.       
Here is where the whole training loop occurs, since         
it manages the exchange of data between the Agent         
and the Environment, as well as handling the        
amount of game matches that the Agent will be         
trained for. Another important role of the Trainer is         
to transfer the training data to the Statistics        
component. So that graphs can be automatically       
generated by tracking important training data; 

● Statistics: Component that can be used to store        
relevant training data. It generates text-based reports       
and uses that to create graphs showcasing the        
evolution of important data, such as the average        
agent reward, the average win rate, the amount of         
each action being used in every game, etc., all of          
that throughout training; 

● Persistence: Component used to store training data       
on the disk. It allows the persistence of the Agent to           
the media, allowing it to be transferred between        
computational nodes. It is specially useful when       
using the toolkit in the cloud or in supercomputing         
environments, since they are headless environments      
and the agent model is usually downloaded to be         
tested on systems with graphical interfaces; 

● Environment Wrapper: Wrapper for an instance      
of a supported game environment. It is important to         
note that URNAI leans heavily on the environment        
structure standardized by OpenAI’s Gym.     
Therefore, the Environment Wrappers are mostly      
used to standardize function calls to all foreign        

environments and bridge the gap between any game        
environment that may differ from Gym’s structure. 

All components exposed above are designed as template        
classes that have all the required abstract methods for the          
architecture to function. Beyond the base template classes,        
that should serve as guidelines for the development, URNAI         
comes with a serie of out-of-the-box action, reward and         
observation wrappers, as well as many algorithms, such as         
Deep Q-Network (DQN), Double Deep Q-Network      
(DDQN), Policy Gradient (PG) and Tabular Q-Learning. 

Fig. 1. URNAI architecture is composed of three main layers. From the            
lower level to the higher level, we have the following: Libraries layer, Core             
layer and Environments layer. 

The out-of-the-box nature of these wrappers allows users        
to assemble different configurations for reward functions,       
action spaces and state observations in order to more         
quickly iterate through different possibilities while testing. 

Currently, URNAI supports one out-of-the-box     
Environment Wrapper for each one of the supported game         
environments. As said before, these wrappers bridge the        
connection between external game environments and      
URNAI, generally just conveying all raw information that        
the game sends back. 

● Layer 3: Game Environments  

The high level layer of the architecture is composed of          
Game Environments. A Game Environment is any platform        
that has an interactive interface, allowing users to change         
the environment, and also has some sort of feedback on          
those changes. Game Environments for DRL algorithms are        
generally prepared to be used by AI Agents, and often have           
Application Programming Interfaces (API) that integrate      
them to programming languages, making the process of        
interpreting the information to and from the game easier. 
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A general requirement of Game Environments for DRL        
is that agents need to be able to affect the environment, and            
that generally comes as a set of possible actions in the game,            
such as moving left or right. Another common feature of          
Game Environments is that they return some sort of         
observation after an action is taken, representing the state of          
the game at a given moment and serving as a feedback to            
the agent. This observation can consist strictly of game         
scenario data or other kinds of data such as end of the game             
status, agent score and so on. 

As seen previously, the connection between URNAI and        
Game Environments is bridged by Environment Wrappers.       
To do that, the Environment Wrappers pass to the         
environment the actions taken by the agent, and then receive          
an observation back. URNAI’s structure requires that the        
Environment Wrapper returns to the agent three pieces of         
data: an environment observation, a reward representing       
whether the agent has won the match, and a flag showing if            
the game has ended. If the game environment does not send           
back all these pieces of data by default, it is in charge of the              
Environment Wrapper to interpret the observation and       
create them. 

B. Documentation 
The toolkit documentation is available at URNAI’s       

github repository [5]. It is composed of four main parts:          
README.md, generated docs, diagrams and results. 

README.md is a file in which one can find an overview           
of URNAI toolkit. How to install it, how to use command           
line tools, dependencies, supported Game Environments and       
so on. In generated docs there is a documentation for every           
class implemented in the toolkit, following the main        
directory structure. In diagrams, one can see a graphical         
view of URNAI’s structure. Finally, in results, one can find          
statistics for some experiments done by using the toolkit. 

IV. LIBRARIES AND GAME ENVIRONMENTS LINKED TO 
URNAI 

In order to make a multi-game toolkit available for DRL          
experimentation, URNAI needs to support the most recent        
and robust technologies used by the Machine Learning        
community. This is achieved in two different ways. First of          
all, by integrating state-of-the-art Machine Learning      
libraries to URNAI’s repertory. Secondly, by adding support        
to modern and generalistic game environment toolkits, as        
well as more complex and detailed game environments, as         
detailed below. 

A. Libraries 
Currently, URNAI has three Machine Learning libraries       

already integrated to it: 

● TensorFlow: TensorFlow [3] is an open software       
library that serves as a broad platform for machine         
learning. It has a broad and flexible ecosystem of         
resources that allows researchers to push the       
state-of-the-art in machine learning; 

● Keras: Keras is a library that builds upon the         
capabilities of TensorFlow and simplifies much of       
its workflow, allowing for easier implementation      
and iteration of machine learning algorithms. Even       
though Keras has high-level abstractions to      
simplify machine learning solutions, it also allows       

for low-level development to experiment research      
ideas; 

● PyTorch: PyTorch [23] is a Python package that        
allows to create and train DNN using different        
methods such as the ones present in Tensorflow.        
Those data structures are built using a Tape-Based        
Autograd System, which allows the DNN to be        
more flexible and dynamic when compared to other        
methods. 

B. Game Environments 
URNAI currently supports several game environments      

(see Fig. 2): 

● Gym: A toolkit developed by OpenAI that consists        
of a collection of several environments that share a         
common interface, enabling the use of generalized       
algorithms to solve them [2]. Gym’s environments       
are generally very simple, consisting of basic       
mini-games or classic control problems, and run       
very efficiently, which makes it a very useful tool         
for testing Machine Learning algorithms; 

● StarCraft II: StarCraft II is a commercial       
real-time strategy (RTS) game. Due to the very        
high complexity, unpredictability, strategic and     
real-time nature of StarCraft matches, it has       
emerged as a grand challenge for AI research [7].         
Following the release of PySC2, a DeepMind’s       
open-source Python library that gives access to the        
game’s internal information, researchers are able to       
experiment algorithms, directly interacting with the      
game environment. So, StarCraft II (SC2) has       
become much more accessible to the wide research        
community. As mentioned before, it is a very        
complex environment that poses hard challenges      
for RL, which is a very interesting research goal.         
However, a downside to SC2 is it’s       
computationally demanding nature, since it is a       
full-fledged game. It generally requires the      
employment of supercomputing with multiple     
GPUs to achieve reasonable training speeds; 

● VizDoom: VizDoom is a platform developed to       
allow the training of AI agents within the iconic         
1993 computer game DOOM [6]. VizDoom is       
primarily focused on computer vision based RL,       
since it represents the information from the game        
as series of images. Consequently, this      
environment is an interesting option to URNAI’s       
repertory, since PySC2 does not represent the game        
as an image, and neither do most of Gym’s         
environments; 

● DeepRTS: DeepRTS is a game environment      
developed to mimic a RTS game, such as StarCraft         
II and so on [4]. Its focus is to provide an           
environment for training and experimenting DRL      
agents. DeepRTS reaches much better performance      
than a full-fledged game, achieving up to seven        
million frames per second. Therefore, DeepRTS is       
an interesting environment to have as an option in         
URNAI, since it can be viewed as a simplified and          
much more performant counterpart to StarCraft II,       
allowing researchers to experiment with both      
environments in several different ways. 
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Since these environments can be quite different from        
each other, URNAI provides preset Agents, State       
Representations, Reward Functions and Action Wrappers      
for each of them. 

The Agent module has two preset classes: a generic         
agent that works on Gym, VizDoom and DeepRTS, and a          
second agent that is designed specifically for StarCraft II.         
Similarly to the Environment Wrappers, these agents are        
generic, and hardly need to be tinkered with, as they fulfill           
all basic needs of a RL Agent, without inferring any abstract           
view of the data. 

 
Fig. 2. Game Environments supported by URNAI. Top Row (left to right):            
Gym, StarCraft II. Bottom Row (left to right): VizDoom, DeepRTS. 

To affect the way the agents perceive the environment, a          
State Builder is used to represent a State (see Fig. 1). Each            
supported environment has at least one state builder related         
to it. StarCraft II, for instance, has three different         
out-of-the-box State Builders, each of them with a different         
approach to representing the environment. 

Similarly to the State Builders, URNAI provides at least         
a Reward Builder for each game environment. StarCraft II         
and VizDoom have multiple builders. These Reward       
Builders define how an Agent can interpret the current state          
of the game, directly affecting the training. 

Finally, the last type of wrapper provided by URNAI is          
the Action Wrapper, used to determine which actions must         
be available to the Agent at any given moment. Each game           
environment has at least an Action Wrapper implemented.        
StarCraft II has four Action Wrappers and VizDoom has         
two of them. StarCraft II also has a generalistic wrapper          
implemented for each playable race of the game, so that          
researchers can either use these generalistic wrappers as        
they are, or as a base to implement more specific wrappers           
that fit their research purposes. 

V. SETTING UP URNAI TO DO EXPERIMENTS 
Before experimenting with URNAI, there are some       

instructions to follow and some setting up to be done. A first            
and preliminary step towards training is deciding which        
Learning Model, Agent and Environment to use. As        
explained before, URNAI comes with many out-of-the-box       

wrappers. Therefore, it is recommended that users visit the         
documentation on github in order to see a more in-depth list           
of all available components, such as agents, environments,        
reward functions, algorithms, etc. 

After components are selected, the next step is        
effectively setting up each component. Instructions on how        
to configure the Environment Wrappers are very specific to         
each game environment, and can be further verified in the          
documentation. Configuring Learning Models, however, is a       
much more generic task, in which URNAI users can specify          
most of the usual parameters in any DRL algorithms, such          
as number of layers, type of layers, number of neurons per           
layer, learning rate, exploration parameters etc. Lastly,       
configuring the Agent is a quite standard procedure, and         
only requires the user to select an action wrapper, a state           
builder and a reward builder. 

The last step before proper training consists in selecting         
the training parameters, which are defined by the Trainer         
component. These parameters are related to the number of         
episodes the agent will train, the maximum number of steps          
the agent can act in each episode, the frequency of saving           
the Learning Model, the saving path, and so on. 

In the following subsections, there is a brief explanation         
of the main features of each URNAI component, as well as           
any additional information that may aid users in        
understanding URNAI’s structure and its use. 

A. Selecting algorithm 
Currently, URNAI has four Learning Models      

implemented: Q-Learning (tabular), Deep-Q Learning     
(fully-connected neural networks), Double Deep-Q     
Learning and Policy Gradients. 

Those different kinds of models are present to allow the          
user to choose which is the most suited for its context. For            
example, Tabular Q-Learning is an excellent choice to be         
used in simple environments, such as the ones presented in          
Gym’s collection. For those games, the tabular model is not          
only faster to train, but it is more stable to learn an usable             
policy. On the other hand, all the other environments require          
a more robust learning model. Deep-Q Learning (DQL) and         
Double Deep-Q Learning (DDQL) are examples of such.        
These algorithms use DNN as memory representation,       
allowing the training of the agent on more complex         
environments, with bigger state spaces. 

Alongside that, a component called Model Builder is        
provided. This component helps the user dynamically build        
different structures of a Neural Network, by defining the         
amount of layers, type of layers, number of neurons and any           
other information necessary to the creation of a functioning         
Model. An interesting aspect of the Model Builder is that its           
main structure is defined as a Python dictionary, which         
allows users to build Learning Models without having much         
experience in programming. Another possibility, considered      
to be easier, is to instantiate a Model Builder object in           
Python and call its methods to add new layers. So, it           
dynamically builds the dictionary for the user. 

B. Selecting game environment 
As mentioned before, there are four main environments        

currently supported by URNAI: Gym, Starcraft II, VizDoom        
and DeepRTS. After an environment is selected, the user         
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needs to access the class of the Environment Wrapper         
selected, or any of the examples available in the repository,          
in order to instantiate their chosen environment. 

C. Selecting Agent 
There are two main agents in URNAI. For most training          

scenarios, a user can adopt a GenericAgent, except for         
Starcraft II that needs to use the SCIIAgent, designed to          
accommodate for some differences in the SC2 environment. 

D. Selecting Action Wrapper, State Builder and Reward 
Function 
Generally speaking, for each environment there are       

many different ways an agent could interact with it, and that           
is specially true for more complex environments such as         
StarCraft II or VizDoom. In order to give users some          
flexibility while training their agents, a few Action        
Wrappers are available for each environment. Some Action        
Wrappers can be used in any configuration of the game,          
while others are supposed to be used with some restrictions,          
such as in a special map, or in a specific game mode. 

For example, there are classes made to be used with a           
specific Starcraft II playable race, or even in a specific          
scenario of VizDoom. More details about each one of these          
specifications can be found by referring to URNAI’s        
documentation. 

The same rules are applied to State Builders and Reward          
Functions. There are generic ones made to work with any          
context of a game. But there are also ones tailored to more            
specific scenarios or approaches to RL. 

VI. START TRAINING IN URNAI 
After selecting all components of the training, the agent         

(with all its parts) and the environment, we will be able to            
start training. In this section we describe two ways to do           
this: coding directly in Python or using JSON files. At the           
end of the section, we have a special subsection that          
describes how to run URNAI on remote machines, such as          
GPU supercomputers. 

A. Python 
One way for using the toolkit is importing it in a Python            
script and joining all the components manually. In general,         
what it is needed to do is to instantiate each object with all             
of the chosen parameters and then ask the Python interpreter          
to run the script. Users can refer to the source code on            
Github to see examples of premade scripts called Python         
Solve Files, available in the solves directory. Generally,        
there is at least one solve file for each Game Environment. 

B. JSON 
JSON files are also supported by URNAI, being useful         

for users who are not familiar with Python or want a more            
direct way to select components and parameters. Some        
training examples using JSON Solve files are available in         
the solves directory. Users are encouraged to use these files          
as a base when creating their own JSON Solve files. 

To start training using JSON files, the user can call          
URNAI from the command line, like so: 

URNAI train --json-file file.json 

C. Tuning learning parameters 
When the training script is ready, in Python or JSON,          

the next step is tuning learning parameters, which is just a           
matter of swapping training components and changing       
parameters’ values. For instance, if the user wants to change          
the reward function, he could swap the Reward Builder.         
Moreover, if he wants to change the DNN structure, he          
could update the model parameters and so on. This process          
is often done after an initial training, to accommodate the          
results, try and improve the model. 

D. Supercomputing 
In the current version, URNAI uses Keras as the main          

library for DRL. This means that Tensorflow is used to train           
DNN models, since it is a Keras dependency. These libraries          
make URNAI naturally able to run different setups, from a          
computational power perspective, such as in supercomputers       
on cloud services or in remote supercomputing systems. 

One way that was found to be reliable in making URNAI           
run in supercomputers was to use container managers to         
simulate operating systems, consequently removing errors      
related to differences in system version, libraries and        
dependencies. A recipe to build a container that runs         
URNAI, using the Singularity container manager, is       
provided in the source code as an example. 

VII. EXPANDING URNAI 

A. Adding new libraries by implementing new models 
In the previous section, we pointed out that the models          

of the current URNAI version are written using Keras.         
However, this does not mean that only this library could be           
used to code models. 

The main goal of URNAI is to be flexible. So, adding           
new learning algorithms and libraries should be an easy task          
to do. That is why the Model has a set of abstract methods             
that can be implemented according to each required external         
library. These methods can be found in the ABModel class,          
which all models should inherit from. 

In general, the main focus of a Model is on the learn()            
method. It receives a State, Action, Reward and State tuple.          
Thus, it should internally follow its own learning algorithm         
to improve the model’s decision making process. So, in         
theory, any Machine Learning Library could be used here,         
the only limitation being that it must be Python compatible. 

We encourage and invite any researchers interested in        
this topic to contribute to URNAI’s repertory of learning         
models, by coding any new model they are interested in.          
Since URNAI’s code is hosted on github, any developer can          
send a push request and collaborate. 

B. Adding new game environments 
To add new game environments, we can use the same          

idea described in the previous section. The Env class         
implements a series of abstract methods used by all         
Environment Wrappers. So, all that is needed to add a new           
game environment is to create a new class that inherits from           
Env and then implement its methods. 

The main focus of an environment is on its step method.           
Here is where the connection with the game happens, since          
the environment wrapper receives an action as a parameter         
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of this function and then sends it to the real instance of the             
game. After delivering the action to the instance, the         
wrapper usually receives a reward and a state (this heavily          
depends on the game being adapted), which should be         
returned to the agent. 

This is the main functionality of the step() method, but it           
may vary from an environment to another. For instance,         
before returning the state to the agent, the DeepRTS         
wrapper inserts game data in the object, such as player          
status, units, and so on, since the main state object of the            
game is just a map configuration. 

It is important to note that the structure and functionality          
of URNAI’s Environment Wrapper leans very heavily on        
OpenAI Gym’s environment definition. So, if a new        
Environment Wrapper implementation is turning out to be a         
bit more complex than anticipated, it might be useful to          
check out the documentation and try to understand how the          
environment transfers data. So, URNAI’s Environment      
Wrapper structure basically extends Gym’s structure,      
opening the door to implementing other game environments. 

VIII. USAGE EXAMPLE 
In this section, a practical example of using URNAI will          

be discussed, going through the same steps detailed on         
sections V and VI. The focus here is to show a step-by-step            
guide on how to set up a training example from beginning to            
end, showcasing all of the components needed and        
presenting their real names. 

A. Choosing Training Components 
As mentioned before, the first step is to select the          

components required to prepare the training. In this practical         
example, we will be trying to make an agent learn how to            
defeat the Starcraft II default AI in the very-easy level. The           
map chosen to train on is the Simple64 map, provided by           
DeepMind’s PySC2 library, and the race of our agent is          
going to be Terran. 

So, URNAI has two main core parts: Agent and         
Environment. If we start on the agent, we can see on the            
documentation that we need to choose a State Builder, a          
Learning Model, a Reward Function and a Action Wrapper.         
For each one, there will be a set of classes that can be used.              
Below will be presented the classes selected: 

● State Builder: since we are playing on the        
Simple64 map, the state builder will be       
Simple64GridState; 

● Model: the model used here is a DNN controlled         
by a Double Deep-Q Learning algorithm, then the        
class is a DDQNKeras; 

● Reward Function: there are several possibilities to       
reward the agent on this map, but the one that          
works best on this context is KilledUnitsReward; 

● Action Wrapper: there is a generalized action       
wrapper for the Terran race, called      
TerranWrapper. However, since the Simple64 map      
is very simple and small, a simpler version of the          
Terran wrapper will be used:     
SimpleTerranWrapper;  

In addition to that, there are the Agent and Environment          
classes. Starcraft II, for instance, needs its specific agent         

class called SC2Agent. For the Environment Wrapper, the        
proper class for StarCraft II is called SC2Env. 

B. Coding The Training File 
Once all required components are selected, it is now         

time to assemble them together in either a Python file or a            
JSON file in order to start training. This section will present           
a brief explanation and code snippets of these files, but for a            
deep dive in them we recommend that users visit the source           
code on the github repository. So, in Python, we instantiate          
the environment like in Fig. 3. 

env = SC2Env(map_name="Simple64", render=False, 
step_mul=16, player_race="terran", 
enemy_race="random", difficulty="very_easy") 

Fig. 3. Instantiating Starcraft II environment wrapper. 

Then we instantiate the Action Wrapper and the State         
Builder in Fig. 4. 

action_wrapper = SimpleTerranWrapper() 

state_builder = Simple64GridState(grid_size=4) 

Fig. 4. Instantiating Starcraft II Simple Terran Action Wrapper and Simple           
64 State Builder. 

Following, we will use the ModelBuilder by quickly        
creating a DRL Model with two hidden fully connected         
layers, each one of them with 50 nodes. Beyond that, we           
will be using the state builder to get the dimension of our            
input layer, and the action wrapper to get the output          
dimension, as we can see on Fig. 5. 

helper = ModelBuilder() 

helper.add_input_layer(int(state_builder.get_state_d

im()), nodes=50) 
helper.add_fullyconn_layer(nodes=50) 
helper.add_output_layer(action_wrapper.get_action_sp

ace_dim()) 

Fig. 5. Using ModelBuilder to generate DNN.  

We can then instantiate the Learning Model as we do in           
Fig. 6. In this particular case, the best training setup tuned           
the learning rate to 0.1%, the rate of decay of epsilon greedy            
strategy to 0.001% at every game step, and a maximum          
memory of 100,000 tuples, as well as a few other details that            
can be further understood by reading the source code and          
the documentation. 

dq_network = DDQNKeras( 

action_wrapper=action_wrapper, 

state_builder=state_builder, 

build_model=helper.get_model_layout(), gamma=0.99, 
learning_rate=0.001, epsilon_decay=0.99999, 
epsilon_min=0.005, memory_maxlen=100000, 
min_memory_size=2000) 

Fig. 6. Instantiating the Double Deep-Q Network Model. 

After that, we can instantiate the Agent itself, like in Fig.           
7, passing the Learning Model and the Reward Builder         
(KilledUnitsReward). 

agent = SC2Agent(dq_network, KilledUnitsReward()) 

Fig. 7. Instantiating Starcraft II Agent. 
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Finally, we will instantiate the Trainer, as seen in Fig. 8,           
and prepare it for training. Some parameters required for         
that are the saving directory, the file name, the frequency at           
which the trainer will save the Agent to disk, the number of            
episodes for training and playing, and the maximum number         
of steps in each game episode. 

The Python file is finally ready for starting training. A          
brief explanation on how to run this file is given in the next             
subsection. Some programming details were omitted from       
this guide for simplicity sake, but the full file can be found            
in the source code under the solves directory as         
solve_simple64_veryeasy.py. 

trainer = Trainer(env, agent, 

save_path='urnai/models/saved', 
file_name="terran_ddqn_vs_random_v_easy", 
save_every=100, enable_save=True, 
relative_path=True) 
trainer.train(num_episodes=3000, max_steps=1200) 
trainer.play(num_matches=100, max_steps=1200) 

Fig. 8. Instantiating Trainer, which is responsible for joining the Agent and            
the Environment Wrapper. 

An alternative to Python files is to create a JSON file.           
The steps to code this type of file are very similar to the             
ones exposed before, and mainly consist in going from         
module to module and declaring each one with the proper          
parameters. Therefore, we will not be showing code        
snippets of this process since a JSON file can become quite           
extensive, and the parameters chosen are exactly the same         
as the ones shown on the Python snippets. So, if a user            
wishes to see the full file, they should refer to the source            
code under the solves directory, as      
solve_simple64_veryeasy.json. 

In this sense, there is a small difference in JSON          
parameters that should be clarified. When declaring the        
parameters of the build model, we should explicitly write         
the dimensions of the input and output layer, as it can be            
seen in Fig. 9. An easy way to do that is to check our State               
Builder and Action Wrapper, respectively, to see the size of          
their output. This process can be seen below, in which the           
size of input layer is 54, due to the size of our State             
Builder’s output, and the size of output layer is 34, due to            
the size of our Action Wrapper’s output. 

"build_model" : [ 
    { 

        "type" : "input",  
        "nodes" : 50, 
        "shape" : [null, 54] 
    }, 

    { 

        "type": "fullyconn",  
        "nodes": 50,  
        "name": "fullyconn0" 
    },  

    { 

        "type": "output",  
        "length": 34 
    } 

] 

Fig. 9. Setupping Double Deep-Q Network in JSON Solve File. 

C. Starting Training 
Running the scripts created in the last subsection is a          

relatively simple task. To do that with the Python file, all           
that is needed is to run it with a Python interpreter, like so: 

python /your/file/directory/solve_simple64_veryeasy.py. 

Running a JSON file is similar, the only difference being          
that we need to have URNAI installed as a Python package.           
So, we are able to use it in the command line: 

urnai train --json-file solve_simple64_veryeasy.json 

from jsontrainer import JSONTrainer 
 

trainer = 

JSONTrainer("your/file/directory/solve_simple64_very
easy.json") 
trainer.start_training() 

Fig. 10. Using JSON Trainer in a Python Script. 

Furthemore, there is a workaround that allows users to         
run a JSON file without installing the toolkit to their Python           
environment, which could be useful in situations where        
users have limited access or permission. This involves        
creating a Python script importing a JSONTrainer class and         
instantiating a trainer based on a JSON file (see Fig. 10). 

IX. EXPERIMENTS CARRIED OUT AND RESULTS OBTAINED 
The goal of this section is to present the results obtained           

with an agent trained using URNAI. It is highlighted that          
our objective here is not to create a state-of-the-art agent          
that defeats pro-level players of Starcraft II. Instead of that,          
we will demonstrate that it is possible to run an agent with            
the toolkit and generate some statistical results to see how          
well the agent is doing during the training and playing steps. 

A. Training Step 
The agent trained for 3000 episodes during the learning         

step. It started by randomly trying all of the actions          
available in its Action Wrapper. This behavior can be         
verified at the first 200 episodes in the graph of Fig. 11. The             
agent has a peak in average reward at the beginning, when           
there are a lot of random variations, and then it starts to fall             
until around episode 600. After that, it starts to learn a good            
strategy and raises the average reward. 

 
Fig. 11. Average reward of the agent by episode. 
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There are some other graphs that we can use to observe           
the agent’s behavior. In Fig. 12, it is presented that the agent            
takes fewer and fewer steps to end the game as learning           
progresses. The number of steps is the amount of actions the           
agent takes to end an episode (game). If we only consider           
this figure, this would mean that the agent could be losing           
quickier as time went on, but Fig. 11 and Fig. 13 show the             
opposite. 

Finally, in Fig. 13 we can see the average winning rate           
of the agent. The more he wins, the higher the average is.            
By the end of the training, the agent winning percentage is           
in the 50% range against his opponent. 

 

Fig. 12. Number of steps the agent has taken to end training episodes. 

 

Fig. 13. Average winning rate of the agent. 

By analyzing all these three figures, we can see that the           
agent learns how to win and even how to win quicker. This            
shows that it might be using some rushing strategy, which          
means that it tries to attack as soon as possible, allowing it            
to surprise the enemy before it can create an army or even            
grow an economy. 

B. Playing Step 
After the training ends, the agent’s knowledge can be         

evaluated by leading it to play episodes without learning. In          
this subsection, we show the evaluation results for the agent          
playing 100 episodes. 

Fig. 14 shows how reward tended to fall during this          
evaluation session. At first glance, the agent might seem to          
be losing, but if we compare the average with the one           
presented on Fig. 11, we can see that it is much higher. So             

the agent is still winning, but the average is falling since its            
winning rate is not 100%. 

We can see that the winning rate has the same trend as in             
average reward. It falls because the enemy is not winning          
constantly, but the winning rate is still high, around 84%.          
This can be checked by looking at Fig. 15, in which we            
might verify that the winning percentage is much better than          
the rate obtained during training. 

Finally, Fig. 16 shows the agent is still trying to win as            
fast as possible, even quicker than while it was training. The           
average number of steps rises during a hundred evaluation         
episodes, going up to 800 steps, but this value is still lower            
than the training average (900 steps). 

 
Fig. 14. Agent’s average reward when evaluating playing episodes. 

 

Fig. 15. Agent’s winning rate when evaluating playing episodes. 

 

Fig. 16. Agent’s average number of steps to end episodes. 
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We can conclude the agent was able to develop a good           
strategy in the super easy AI level of Starcraft II. It might be             
a rushing strategy, since the average number of steps tended          
to be low at training stage and is even lower in evaluation.            
But it is not the best strategy because we can see that the             
winning rate while training was around 50%, and it tended          
to fall while evaluating the agent. 

X. CONCLUSIONS AND FUTURE WORKS 
This paper introduced URNAI, a new toolkit that        

facilitates the training and evaluation of AI into multiple         
game environments. The main feature of the toolkit is its          
architecture, which allows the configuration of multiple       
learning scenarios and agents, as well as the integration of          
several games and new libraries for DRL algorithms. 

We also showed how to set up and use the toolkit, as            
well as how to do an experiment that showcased some of its            
capabilities. In the experimentation section, an agent was        
able to learn a good strategy against the very-easy AI          
difficulty of StarCraft II. This demonstrates that URNAI is         
currently functional and can be used for various types of          
learning experimentation settings. 

However, since this is URNAI’s first version, it is clear          
that there are several improvements that could be done. So,          
the next step in URNAI’s development is to provide other          
learning models, libraries and games. Examples of such        
could be the Asynchronous Advantage Actor Critic (A3C)        
algorithm as a new model, Theano as a new library, and the            
Arcade Learning Environment (ALE) [1] as a new game         
environment. 

Also, some aspects of the architecture could be        
improved, such as modules to standardize environments’       
states and actions, and the possibility to inherit the toolkit to           
use some of its services, which could lead to it eventually           
being transformed into a framework. Additionally, learning       
scenarios could be included to make training easier for users          
who want to configure only the learning model parameters,         
without worrying about action wrappers, reward functions,       
etc. 

Finally, we invite researchers and developers to       
contribute to URNAI’s repository [5] in order to add new          
features, such as new models and environments, or just         
improving its architecture. Since it is hosted in github,         
anyone willing to collaborate can send a pull request and          
help improve this work. 
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