
An evaluation of JavaFX as a 2D game creation tool

Hamilton Lima Jr Fábio Corato de Andrade Anselmo Montenegro Esteban Clua

Media Lab – UFF Media Lab - UFF Media Lab - UFF Media Lab - UFF

Abstract

With the current growth in the user experience and the

existence of multiple publishing platforms, the

investigation of new game creation tools that simplify

the development process, is important to reduce costs

and increase the overall quality of the products.

Based on this perspective, we present an analysis of the

JavaFX technology as a tool for 2D game

development. For instance, we will focus the

evaluation on the following features: deployment,

scripting support, vector graphics support, flexible

main loop, sprite caching, collision handling, audio

support and distribution license.

Keywords: 2d games, JavaFX, tool evaluation, RIA

Authors’ contact:
{hlima,anselmo,esteban}@ic.uff.br
fabio.corato@ig.com.br

1. Introduction

JavaFX [JAVAFX] is a GUI (Graphic User Interface)

framework created by Sun Microsystems, based on a

script language that merges XML definitions with

embedded JavaScript-like code. JavaFX can use pure

Java classes integrated in the scripts, which allows the

enhancement of existing Java applications with a

modern look and feel. With the perspective of a rich

user experience, our study is based on the creation of a

video game.

This analysis is based on the experience of creating a

side scrolling platform video game using the JavaFX

script technology. During the experiment of the game

creation several decisions were made in order to

accommodate the technology and the expected results

of the game, most of these decisions are described in

the paper separated in two main topics: The process of

development and issues found during this process.

At the process of development topic, we will go over

the integration with the design team, the sprites

caching management, the organization of the scripts

files and the collision handling. The Issues found topic

will describe the current audio support of JavaFX, the

difficulties to deploy the game and some license

restrictions.

2. Development process

For this experience we created a port of an existing

game submitted to the Global Game Jam 2009, called

Tiny Soldiers the Rise of Mosquito

[TINYSOLDIERS], that is a side scrolling game

created in XNA.

2.1 Game main loop

Most of the available samples of JavaFX are organized

in only one big script due to the simplicity of the

samples, in our case we will enforce that the separation

of script files will allow an object oriented organization

of the script files. Our main script will be the Main.fx

file that will have all the declaration of the instances

used in the game.

First of all this script will have the instance of the

Game object that is an extension of the Stage class.

The Game.fx class uses a TimeLine [JAVAFXAPI]

object to control the game main loop; by using this

type of object we can control the speed of the game by

changing the time parameter of the Keyframe object

inside the TimeLine

public class Game extends Stage {
 public var tick: Timeline = Timeline {
 repeatCount: Timeline.INDEFINITE
 keyFrames: [KeyFrame {
 time: 10ms
 action: function() {
 mainLoop();
 }}]

 };

 public function mainLoop(){ }
 public function play(){ tick.play(); }
}

Code 1: Creation of the main loop

The “KeyFrame” object have an attribute “time” that is

from the type Duration, that allows the usage of

milliseconds, seconds and minutes or combination of

the three. Language features like this add simplicity to

the code and make the development process more

intuitive.

The mainLoop() method check for objects that extends

the ”Updatable” class and call update() method of each

one propagating the game tick for the objects that need

update in the game.

Figure 1: Main loop sequence diagram

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

25

In order to use the “Game” class, the Main.fx script

creates a “Game” instance and call the play() method,

this starts the timeline and keep the game in constant

loop.

var game: Game = Game {
 title: "Tiny Soldiers ... "
 x: 0
 y: 50
 width: 800
 height: 600
 scene: Scene {
 content: bind currentGroup
 }
 fullScreen: false
}

function run(__ARGS__ : String[]) {
 game.play();
 soundtrack.play();

}

Code 2: The Instance of the Game class

The run() method of the “Game” instance is the

JavaFX implementation of the Java main() method. In

order to create the initial state of the “Game” object, all

attribute changes and instance attribute creation should

be defined inside the curly brackets.

2.1 Design team integration

Game development teams need someone to fill the

artistic role. This role will create the environment, the

GUI, the characters and NPC's (non player characters)

and all visual behavior of the game. To support this

role JavaFX offers support to uncompressed and

compressed bitmaps files. In addition to images

support, a production suite integrates JavaFX with

design tools as Adobe Photoshop [PHOTOSHOP] and

Adobe Illustrator [ILLUSTRATOR], beside that also

offer a converter that reads SVG [SVG] files and

convert then to FXZ files, that are the standard format

used for images definition at JavaFX and can be read

directly in the code.

As the design team can work in parallel with the

programming team, we can have colored rectangles

working as game characters during the development

process; what can be achieved within most of existing

game frameworks. With the use an SVG files

converted to FXZ format is possible to add a unique

identifier attribute to individual elements of drawings,

usually know as ID, and these are the reference used in

the script to manipulate the images that can be changed

by the design team without any sort of change in the

code.

The Figure 2 shows the character that was created in

the SVG format and imported to the JavaFX project.

After importing the SVG to the project we can use the

method lookup() to retrieve references of individual

parts of the image, and manipulate it, see a sample in

the Code 3.

(player1.lookup("JFX:body")
 as Rectangle).fill = Color.BLUE;

Code 3: Changing one object fill color

Figure 2: Imported SVG file

This approach allow the use of the FXZ files as

integration artifact that won't need any intervention

from the programming team in order to work properly

in the game, this integration allow the use of complex

objects and have its visual aspect changed by

programming instead of having multiple sprites for the

different states of the visual object.

2.2 Sprite caching

Vector images in the SVG format, are compressed with

ZIP algorithm to create the FXZ files. SVG files can be

as simple as a circle with a center point and a radius, or

can be as complex as hundreds of shapes and points,

build together to make complex illustrations, that will

be read and interpreted by JavaFX every time the FXZ

file is used by the game.

When complex illustrations composed by several

shapes and fills, are used in the JavaFX scripts, a call

to FXDLoader.load() will force the parsing of the FXZ

file, as most of the times some illustrations are reused

in the game, there is a need to avoid all this parsing

every time the illustration is used, The Code 4 show

the caching mechanism implemented to load the FXZ

files only once and enable the reuse of the objects.

public class NodeFromFXZPool {

 var cache: HashMap = new HashMap();
 public function get(source:String):Node{

 var content:
 Node = cache.get(source) as Node;

 if(content == null){

 content =
 FXDLoader.load(source) as Node;

 cache.put(source, content);
 }

 return Duplicator.duplicate(content);
 }

}

Code 4: Sprite caching implementation

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

26

The key of the caching mechanism implementation is

the Duplicator [JAVAFXAPI] class that uses and

existing Node definition and create an independent

copy of it.

2.3 Scripts Organization
In order to organize the code in classes we separated

the classes in .fx files, but this created an problem

when defining the different Scene [JAVAFXAPI]

objects of the game, because we need to change the

main game instance in order to indicate Scene changes.

This would be simple to achieve if the scope of the

event handling methods belong to the objects created,

but in JavaFX the scope of the created methods belong

to the script where the method were created.

In this example we have the definition of an instance of

the HowToPlayGroup that will be show as current

scene of the game and when the onClick method is call

the currentGroup is changed to a value that is declared

in the Main.fx

var howToPlayScene: HowToPlayGroup =
HowToPlayGroup {
 onClick: function(){
 currentGroup = menuScene;
 }
}

Code 5: Use setting the Group callback

In order to create this we build a callback solution in

the scene definitions to avoid coupling with the main

script,

public class HowToPlayGroup extends Group
{

 public var onClick: function(): Void;
 ...
 onMouseClicked: function(e){
 if(onClick != null){
 onClick();
 }
 }
 ...
}

Code 6: Creating the callback in the Group

With this callback strategy scenes can be treated as

independent artifacts that can be created and tested

without the main script, reducing external

dependencies and the coupling to the main Stage.

2.4 Collision Handling

In JavaFX games in order to check the collision of

game elements we use the Rectangle.intersect() method

that is provided with the language. There is a

possibility of having more complex collision handling,

this need additional implementation, that could be

iterating over the existing points from an imported

SVG file or from a script based polygon.

One workaround to this restriction is presented by

Silveira Neto [NETO, SILVEIRA 2008], and we can

see at Figure 3, where a bounding box is created at the

coordinates x=4 and y=25 inside the game object itself,

so part of the object really overlaps the collision target

when the collision happens, offering to the player the

visual feedback of the collision.

Figure 3: Bounding box smaller than the image

3. Issues

3.1 Audio support

The current version of JavaFX use a video/audio

decoder created by On2 [ON2]. This decoder offers

support to multiple video formats, and claims that

offers support to MP3 files. After some tests with

different MP3 files encoded with different frequencies

and different quality, JavaFX wasn't able to play most

of the combinations; Table 1 shows some tested

combinations.

Frequency Encoding Duration File size Result

48000Hz 128bits > 1sec 456K Failure

48000Hz 96bits > 1 sec 341K Success

48000Hz 32bits > 1sec 114K Failure

48000Hz 16bits > 1 sec 57K Failure

Table 1: MP3 combinations tests

In order to solve this MP3 restriction, we implemented

a new version of MediaPlayer class, integrating the

Jlayer library [JLAYER] objects in

AbstractAsyncOperation objects. With this solution all

the combinations described in the Table 1 was play

with success. The same solution can be used to add

support to OGG, WAV or any other audio format.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

27

3.2 Deploy of the game

We tested the Applet and Web Start [WEBSTART]

deploy of JavaFX applications. For the Applet or the

Web Start deploy the user needs to download the

JavaFX Runtime environment that can't be released

with the application due to license restrictions, that

force the end user to be online at the first run of the

game. This restriction is a roadblock to the usage of

JavaFX as solution to create standalone games, where

the users don’t need internet connection to play.

Using the Web Start solution the end user is forced to

handle dialogs in English, without an option to

translate to the user's language; this is a serious

restriction for publishing games to the general public in

special for the Brazilian market. Other issue on using

the Web Start solution is the fact that even with Java

Runtime Environment installed Web Start application

files are not automatically executed, what adds an extra

complexity to the end users, in order to execute the

Web Start file.

Another issue when using the JavaFX as an Applet is

the fact that the whole applet must be downloaded

before the user can start the interaction, this generate a

high level of frustration due to the fact that Applet

download don't give the user a feedback of the

percentage of the download. A Java Game engine

named Pulpcore [PULPCORE] based on applets solved

this issue, for plain Java Applet games, by creating a

small applet with less than 200k in size, which loads

the real application applet, and can show to the user a

feedback of the percentage of the game download.

4. Related work

Despite the fact that JavaFX is new and still with some

bugs, there some casual games developed, there is a

Pacman clone [PACMAN] and the Brick Breaker

[BRICK] that can be found at the JavaFX

documentation.

5. Conclusions

Based on the fact that JavaFX offers a full integration

with existing Java code, we can assume that JavaFX

has a good chance to be the next natural GUI

framework choice for Java games and applications.

Related to the evaluation itself, we can conclude that

JavaFX can be used to create game applications with

some restrictions. The current audio support has

restrictions related to MP3 files and no OGG files

support. Only controlled environments where the users

can make sure that access to the Internet is available, is

the expected deployment scenario in order to download

the JavaFX runtime environment.

Follow the summary of the JavaFX evaluation using

the 2D game development challenges table:

Deployment Online required, >10mb

runtime download

Scripting support Full with JavaFX script

Vector graphics

support

Can be imported to

framework script

Flexible main loop Created with TimeLine

Sprite caching Can be done

Collision handling Rectangles only

Audio support Poor mp3 support, no

OGG

Distribution license Can't distribute standalone

runtime, need download

Table 2: Summary of JavaFX evaluation

We see as expansions to this research the investigation

of multi-player games created with web technologies

especially with JavaFX. Other future research related

to JavaFX would be the investigation of 3D

possibilities, in particular the integration with Jmonkey

or Java3D engine.

References

BRICK, Brick Breaker JavaFX game sample,

http://javafx.com/samples/BrickBreaker

ILLUSTRATOR,

http://www.adobe.com/products/illustrator

JAVAFX, http://javafx.com

JAVAFXAPI, JavaFX API documentation,

http://java.sun.com/javafx/1/docs/api/index.html

JLAYER, Pure Java mp3 library,

http://www.javazoom.net/javalayer/javalayer.html

NETO, SILVEIRA 2008, How to create a RPG like

game, http://silveiraneto.net/2008/12/08/javafx-how-

to-create-a-rpg-like-game

ON2, On2 technologies, http://www.on2.com

PACMAN, JavaFX Pacman clone,

http://www.javafxgame.com/javafx-pac-man-article-5

PHOTOSHOP,

http://www.adobe.com/products/photoshop

PULPCORE,

http://www.interactivepulp.com/pulpcore/

SVG, http://www.w3.org/TR/SVG

TINYSOLDIERS, Tiny Soldiers the Rise of Mosquito,

Global Game Jam 2009,

http://globalgamejam.org/games/tiny-soldiers-rise-

mosquitos

WEBSTART,

http://java.sun.com/javase/technologies/desktop/javaw

ebstart/index.jsp

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

28

