
GPU Octrees and Optimized Search

Daniel Madeira

Anselmo Montenegro

Esteban Clua

Computation Institute, UFF

Thomas Lewiner

Matmı́dia Laboratory, PUC-RIO

Abstract

Octree structures are widely used in graphic applications to accel-
erate the computation of geometric proximity relations. This data
strucutre is fundamental for game engine architectures for a correct
scene management and culling process. With the increasing power
of graphics hardware, processing tasks are progressively ported of
to those architectures. However, octrees are essentially hierarchical
structures, and octree searches mainly sequential processes, which
is not suited for GPU implementation. On one side, several strate-
gies have been proposed for GPU octree data structure, most of
them use hierarchical searches. On the other side, recent works
introduced optimized searches which avoid hierarchical traversals.

In this work, we propose a GPU octree that allows for those opti-
mized searches, which uses the GPU streaming to search for large
of points at once. Moreover, we propose a parallelization of those
optimized search to speed up the single point search.

Finally, the proposed structure takes advantage of the recent graph-
ics hardware architectures to improve the GPU octree data struc-
ture.

Keywords:: Octree, GPU, Geometric Search, Hardware Acceler-
ation

Author’s Contact:

{dmadeira,anselmo,esteban}@ic.uff.br
lewiner@gmail.com

1 Introduction

A great amount of graphics algorithms rely on spatial proximity:
collision detection, surface geometry approximation, particle-based
fluid simulation, light ray-based rendering among many others.
Brute-force search procedures to detect proximity relations typi-
cally induce a quadratic complexity, which is prohibitive for large
data sets. Therefore, several optimizations have been proposed to
accelerate those searches, most of them in a divide-and-conquer
fashion: dividing the space into smaller blocks that can be pro-
cessed independently. This division needs to be stored in mem-
ory, leading to a trade-off between memory consumption and search
procedures acceleration.

Classical structures have been devised inside this trade-off: bi-
nary space partitions, k-d trees, octrees and multi-grids [Samet
1990]. Among them, the octree structure is certainly one the
most widespread in image processing, geometric modeling, med-
ical imaging, collision detection, point based rendering, isosurface
visualization and volumetric rendering, among many other fields.

With the increasing power of graphics hardware (GPU), many
graphics and non-graphics applications are ported to those paral-
lelized stream-processing architectures, which is a very delicate but
productive task [Buck et al. 2004; Zamith et al. 2008]. The ideal
situation would be to handle all the application stage, and all of
the geometry and rasterization stages on the GPU. However, sev-
eral parts of the a typically application, such as user interaction or
pure hierarchical traversals, are essentially sequential, requiring for
a CPU implementation. This implies continuous CPU-GPU com-
munications, which is often a bottleneck, since the data bus between
CPU and GPU is limited.

This work proposes a GPU octree data structure that allows for op-
timized searches [Castro et al. 2008]. This structure is fully ad-
dressed in the GPU, reducing the CPU-GPU traffic.

2 Related Work

Recently, several works have proposed octree implementations on
the GPU. Most of them represent the octree in the usual way of a
general tree: each node has a reference for its eight children. The
difference between them is how to reference the children of a node
on the octree [Benson and Davis 2002; Lefebvre et al. 2005; Ziegler
et al. 2007; Vasconcelos et al. 2008; Ajmera et al. 2008].

Some other representations have been proprosed, some of them re-
placing the explicit use of pointers to children by simple calculus
of their location in an index table [Gargantini 1982; Glassner 1984;
Warren and Salmon 1993; Lefebvre and Hoppe 2006; Bastos and
Celes 2008].

Moreover, current GPUs offer much more efficient manipulation
of data structures [Fatica and Luebke 2007; Nickolls et al. 2008]
avoiding the restriction of using texture as mass memory, and this
work introduces a simple way to efficiently take advantage of this
evolution.

Usual searches in octrees proceeds in the divide-and-conquer man-
ner: starting from the root node, the search decides at each node
which child may contain a given location, and recurse on that child
until reaching the leaves of the tree. This leads to an average loga-
rithmic complexity of the search. Although sequential, this proce-
dure is the base of most GPU octree proposals [Benson and Davis
2002; Lefebvre et al. 2005; Ziegler et al. 2007], or at least for the
search of an isolated point [Vasconcelos et al. 2008; Bastos and
Celes 2008]. Castro et al. [Castro et al. 2008] improved this search
strategy for hash table representations of octrees. Instead of starting
from the root, they begin searching at a given depth of the octree,
and then traverse the octree up- or down-wards. A statistical opti-
mization stated the initial depth to minimize the expected traversal
steps, leading to an amortized constant time for the search. We use
this strategy in this work.

Contributions

In this work, we propose a GPU octree search structure based on
hash table that enjoys the new GPU architecture for the data struc-
ture and optimized search [Castro et al. 2008].

This optimized search strategy actually treats each search location
and octree depth independently, which is optimal for the GPU par-
allel structure, and is the strength of our method. In particular, we
can perform the search for a sequence of points in parallel, stream-
ing the optimized search. We also introduce a parallel version of
the optimized search, which allow to efficiently search for a single
point at a time.

Our GPU octree search algorithm actually shows to be very fast. In
the experiments reported in this work, our algorithm runs at least 3
times faster than the CPU algorithm, achieving, in some cases, an
speed-up factor of 50.

3 Review of Octree Representations

An octree is a hierarchical data structure based on a recursive de-
composition of a 3D region. Each node represents a cube in the
region, and the root node represents the whole region. The cube
of a non-leaf node is divided into 8 octants, thereby generating 8
children. In most applications, the data is stored in the leaves. In
this section we present some common octree representations.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

73



3.1 Pointer Octree

The most classic representation of octrees uses pointers, as a tradi-
tional tree. Usually, each node stores 8 pointers, one for each of its
child, and some data. In leaf nodes, the pointers to the children are
void, while in intermediate nodes, the data is void [Samet 1990].
A pointer from a child to his father can also be added, in order to
facilitate upward traversal.

For octrees where each node is either a leaf or has exactly 8 chil-
dren, it is possible to reduce the number of pointers by storing only
a pointer to the first child and to the next sibling. However, this
increases the traversal time.

3.2 Hashed Octree

It is possible to replace pointers by indexes. In that case, the refer-
ences to a child node must be replaced by a calculus on the father’s
index, and the nodes must be stored in an index table.

Those structures are more compact that pointer octree, although
depending on the pointer dereferencing time compared to the ref-
erence child index computation, it may be slower to access than
pointer octrees.

However, they allow a direct access in constant time to any node
of the octree, provided its index, while pointer octrees only allow
direct access to the root.

Figure 1: Hash representation of the quadtree. The hash function
uses a 3 bits key (top row) to group the tree nodes (bottom rows).

The index can be generated ad hoc for a static octree in order to
reduce the index table, as proposed on GPU through perfect hash-
ing [Lefebvre and Hoppe 2006; Bastos and Celes 2008]. However,
any significant change in the octree structure implies a complete
rebuilding of the indexes, and the child references calculus are re-
placed by extra memory storage.

The index can also be systematically generated from the node geo-
metrical position and/or by the node position in the octree hierarchy.
This is the representation used in this work. A common choice for
such index is Morton codes, reviewed at the next section. For usual
octrees, those indexes are not consecutive, and thus the hash table
must group them to avoid wasting too much memory. A common
strategy is to group nodes that have the same last k bits of the Mor-
ton code, with k = ⌈log (n)⌉+ 1, where n is the number of nodes
(see Figure 1). In other words, the hash key ℎ assigned to a morton
code m is defined by ℎ (m) = m mod k.

3.3 Morton Index Generation

For spatial ordering of the nodes and to generate the indexes for the
hashed octree, we use the Morton code. This method is efficient
to generate unique index for each node, while offers god spatial
locality and easy computation. Another advantage of Morton code
is their hierarchical order, since it is possible to create a single index
for each node, while preserving the tree hierarchy.

The index can be calculated from the tree hierarchy, recursively
when traversing the tree. The root has index 1, and the index of each
child node is the concatenation of its parent index with the direction
of their octant, coded over 3 bits. The bottom-up traversal is also
possible, as if to find the parent index we only have to truncate the
last 3 bits of a child index.

The index can equivalently be computed from the geometric posi-
tion of the node’s cube and its size. Considering that the root’s cube
is a unit cube, and denoting by (x, y, z) the coordinates of the cube

center and by 2−l the cube side, i.e. the node is at depth l, we can
generate the Morton code by:

1xlylzlxl−1yl−1zl−1xl−2yl−2zl−2 . . . x1y1z1 , (1)

where xlxl−1 . . . x1 is the binary decomposition of ⌊2lx⌋.

The generation of this index can be accelerated using integer dila-
tion and contraction [Stocco and Schrack 1995].

4 Our GPU Octree Structure

We use hash table for the GPU representation of the Octree. This
involves two specific design choices: the GPU memory used and
the hash collision handling.

4.1 GPU Storage

Recent graphics hardware use CUDA architecture, which greatly
improves the storage on GPU. CUDA stains for Computer Unified
Architecture, and brings a new parading for memory distribution
among the GPU. The texture memory can be addressed as a global
memory for a GPU code, with linear and random addressing from
the threads and blocks of each internal grid. This allow more ef-
ficient implementations of applications not related to the graphi-
cal pipeline and much more efficient octree implementations than
presented in [Benson and Davis 2002], [Lefebvre et al. 2005] and
[Ziegler et al. 2007].

4.2 Collision handling

A collision in the hash table occurs when two nodes have the same
hash key. A simple option is to leave colliding nodes in the same
entry of the hash table (open hashing). However, this requires either
to allocate enough space in all the entries of the hash table to con-
tain the maximal number of colliding nodes, which would require
a static or controlled data and would waste a lot of memory, or to
let a variable size structure in each entry of the hash table. This last
option is commonly used in CPU implementation, since variable
size container are easily implemented with pointers. However, this
is much less efficient on GPU.

Another way to avoid collisions is to keep one of the colliding nodes
in the position assigned by its hash key ℎ, and to place the other
ones at empty positions in the hash table (closed hashing). Those
empty positions must be systematically chosen, by a collision func-
tion c(ℎ), to ensure that we can retrieve the other nodes!

Looking for a node n then resumes to looking at the position of its
hash key. If the position is empty, then node n does not belong to
the hash table. If not empty and if the node at the hash key position
is different from n, then we look at position ℎ′ = c(ℎ). We repeat
until n is found or a empty node is achieved. In this work, we use a
linear colliding function, i.e. c(ℎ) = ℎ+ c0 for a fixed c0.

!!!

!"""" !"""! !""!! !!""!!!""" !"""!

!!" !"! !"" "!! "!" ""! """

Figure 2: Closed hashing: a colliding entry is sent to a new loca-
tion, here its original location shifted by 2.

5 Octree Search Algorithms

A direct search procedure in an octree returns the leaf whose cube
contains a given position in space. In this section, we will recall
usual algorithms for such search procedure, and introduce our pro-
cedure for our GPU octree.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

74



5.1 CPU Algorithms

In pointer octrees, a search can only be done starting from the root
node and traversing hierarchically the tree until the desired leaf is
reached. This method has complexity of log

8
(n), and O (n) at

worse case. The algorithm below shows a search in a pointer octree.
In this method, the position and size of each traversed cube can be
directly deduced from the recursion.

Algorithm 1: Classical search for point p.

start with the root r and a c a unit cube : n = r ;1

while n is not a leaf do2

retrieve the child n′ of n containg p ;3

set n = n′ and c the octant of n′ ;4

end5

return n;6

Optimized searches offer a different access method. Since the
leaves are the most distant nodes from the root node, it is better
to start from a node closer to the desired leaves than from the root
node.

However, to access a random node in the hashed octree, we need its
Morton code, computable from position and depth. We know the
position p from the search input, but the depth must be estimated.
The optimized search [Castro et al. 2008] proposes to estimate this

depth by the weighted median l̂ of the expected depth, since it min-
imizes the number of traversal operations.

Algorithm 2: Optimized search for point p.

compute Morton code mmax of p at maximal depth;1

compute code m of p at depth l= l̂ from mmax ;2

access the node n corresponding to m in the hash table;3

// upward traversal, in case n is below the leaf
while m does not belong in the hash table do4

decrease the depth l, removing 3 bits from m;5

access the parent of n in the hash table with m;6

end7

// downward traversal, in case n is not a leaf
while n exists in the hash table do8

increase the depth of m, adding 3 bits of mmax;9

access the child of n in the hash table with m;10

end11

return n as the last valid access to the table ;12

5.2 GPU Algorithms

The main contribution of this work is to parallelize the optimal
search algorithm, presented in the previous section, to port it to
GPU architecture. To do so, we take advantage of the fact that the
search for each point is independent and, that, in practical applica-
tions, e.g. collision, many queries are needed simultaneously.

We first describe how to parallelize the search for a single point p
given g available threads. The main idea is to search at many lev-
els in parallel. Since we know from the statistical optimization that

the leaf is probably near level l̂, we concentrate the threads around
that level. In the CPU implementation, the upward and downward
traversals test 1 level up or down. Here, to avoid duplicate efforts,
the upward traversals are handled by the first half of the thread,
skipping g−1

2
levels instead of 1, and the downward traversals. Al-

though the CPU search can be as fast as the GPU search, the advan-

tage of this method is fully maintain the octree in the GPU

Algorithm 3: GPU search for point p given g threads.

compute Morton code mmax of p at maximal depth;1

for iter ∈ 1..itermax do2

foreach thread ti ∈ (0 ⋅ ⋅ ⋅ g−1) do3

if ti ≤
g−1

2
then4

assign li = l̂ + ti + iter ⋅ g−1

2
;5

else6

assign li = l̂ + ti − (iter + 2) ⋅ g−1

2
- 1 ;7

end8

compute code m of p at depth li from mmax ;9

access the node n corresp. to m in the hash;10

if n is a leaf then return n ;11

end12

end13

Observe that, in the CPU implementation, a leaf was detected test-
ing for invalidate downward traversal. Here, we need to explicitly
store for each node if it is a leaf or not. In practical applications,
where the leaves are the only nodes containing data, this does not
induce any memory overhead.

Now, computing the search for many points at the same resumes to
divide the number of available threads by the number of points to
search for, and use the above algorithm in parallel for each point.

6 Experiments and Results

We implemented the above algorithms inside the CUDA architec-
ture, using the hashed octree with closed hashing. To handle the
colisions, we used the linear colliding function. Although there
could be more optimized methods, we chose it for its simplicity.

In our experiments, we used five models, at different resolutions.
The results were obtained on a Core 2 Duo T9400 CPU, running at
2.53GHz, with a GeForce 9600M GT, with 32 processors.

We first tested our approach by searching for random points, and
compare the timings between the CPU and GPU implementations.
We searched simultaneously for 10 to 300 points.

The absolute timing comparisons are reported on Table 3, our algo-
rithm achieved an execution time at least 3 times faster than CPU
algorithm for a small number of searches. When searching for 300
points, our algorithm runs in average 45 times faster.

On the detailed results reported on Tables 1 (CPU) and 2 (GPU), we
clearly see that the increase of the number of search points gener-
ates a linear increase of the execution time with a high proportion,
while the results on the GPU shows a clear benefit of our paral-
lelization.

In Figure 3 we can observed that the execution time of our algo-
rithm grows slowly, in a linear pattern.

Table 1: Total execution time (in seconds) for the CPU algorithm.

# points 10 50 100 200 300

Ant 1 2 5 10 14

Armadillo 1 4 8 17 25

Bunny 1 3 7 14 21

Drill vripped 1 2 4 6 10

Drill zip 1 3 7 15 21

We further test for the influence of the hash table size. While in
the first test, the octrees of all models and all implementations were
stored in a hash table with the same size, in this second test, we
varied the size of the hash table. In the results are presented in Table
4, we check that the influence of the size on our GPU algorithm is
little, while keeping it big enough to contain the whole octree.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

75



Table 2: Total execution time (in seconds) for our GPU algorithm.

# points 10 50 100 200 300

Ant 0.27 0.28 0.36 0.39 0.43

Armadillo 0.29 0.29 0.38 0.41 0.44

Bunny 0.28 0.35 0.37 0.4 0.37

Drill vripped 0.28 0.35 0.37 0.34 0.37

Drill zip 0.28 0.28 0.21 0.37 0.38

Table 3: Speed-up of our algorithm for the test cases. Our algo-
rithm runs at least 3 times faster than the CPU algorithm.

10 50 100 200 300
Ant 3,70 7,14 13,89 25,64 32,56

Armadillo 3,45 13,79 21,05 41,46 56,82

Bunny 3,57 8,57 18,92 35,00 56,76

Drill vripped 3,57 5,71 10,81 17,65 27,03

Drill zip 3,57 10,71 33,33 40,54 55,26

7 Conclusion

This work presented a new GPU approach for searching elements
in octrees, based on hash table representation and optimized search.
The solution is based on the fact that, in such contexts, each octree
level is independent from the others. We proposed a parallelization
of the search algorithm, which lead to a totally streamed imple-
mentation. This method combines the memory efficiency of the
hashed octree with a significantly smaller execution time thanks to
the structure of recent graphics hardware.

Many diferent applications can benefit from this speed-up, since
it can be implemented to any scene structure that supports octree
representation.

As future works, more efficient hash methods can be analyzed and
used with the presented strategy. It is also important to validade the
proposed approach for complete applications, such as real time 3D
collision detection.

Also with the 2 searchs presented, we can now implement the octree
generation on the GPU.

References

AJMERA, P., GORADIA, R., CHANDRAN, S., AND ALURU, S.
2008. Fast, parallel, GPU-based space filling curves and octrees.

BASTOS, T., AND CELES, W. 2008. GPU-accelerated Adaptively
Sampled Distance Fields. In IEEE International Conference on
Shape Modeling and Applications, 2008. SMI 2008, 171–178.

BENSON, D., AND DAVIS, J. 2002. Octree textures. In Siggraph,
vol. 21, 785–790.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. 2004. Brook for
GPUs: stream computing on graphics hardware. In Siggraph,
777–786.

CASTRO, R., LEWINER, T., LOPES, H., TAVARES, G., AND BOR-
DIGNON, A. L. 2008. Statistical optimization of octree searches.
Computer Graphics Forum 27, 1557–1566.

FATICA, M., AND LUEBKE, D., 2007. High performance comput-
ing with CUDA. Supercomputing 2007 tutorial. In Supercom-
puting 2007 tutorial notes, November.

GARGANTINI, I. 1982. Linear octrees for fast processing of three-
dimensional objects. Computer Graphics and Image Processing
4, 20, 365–374.

GLASSNER, A. 1984. Space subdivision for fast ray tracing. Com-
puter Graphics & Applications 4, 10, 15–22.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing. In
Siggraph, 579–588.

Table 4: Execution times (in seconds) for the Ant model, with dif-
ferent sizes for the hash table.

Size of the hash table
2,000,000 1,000,000 500,000 250,000 100,000

CPU 5 s 2 s 1 s 1 s 1 s
GPU 0.33 s 0.29 s 0.28 s 0.28 s 0.27 s

Figure 3: Execution time of the GPU results of Table 2. The graph
shows the linear complexity of our algorithm.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Octree tex-
tures on the GPU. In GPU Gems 2 - Programming Techniques
for High-Performance Graphics and General-Purpose Compu-
tation. Addison Wesley, ch. 37, 595–613.

NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K.
2008. Scalable parallel programming with cuda. Queue 6, 2,
40–53.

SAMET, H. 1990. The design and analysis of spatial data struc-
tures. Addison-Wesley.

STOCCO, L., AND SCHRACK, G. 1995. Integer dilation and con-
traction for quadtrees and octrees. In IEEE Pacific Rim Con-
ference on Communications, Computers, and Signal Processing,
1995. Proceedings, 426–428.

VASCONCELOS, C., SÁ, A., CARVALHO, P., AND GATTASS, M.
2008. Quadn4tree: A gpu-friendly quadtree leaves neighborhood
structure. In CGI: Computer Graphics International. 1101.

WARREN, M. S., AND SALMON, J. K. 1993. A parallel hashed
octree n-body algorithm. Supercomputing, IEEE, 12–21.

ZAMITH, M., CLUA, E. W. G., PAGLIOSA, P., CONCI, A., VA-
LENTE, L., FEIJO, B., LEAL, R., AND MONTENEGRO, A.
2008. The GPU used as a math co-processor in real time ap-
plications. Journal of Computer in Entertainment: CIE 6, 1–19.

ZIEGLER, G., DIMITROV, R., THEOBALT, C., AND SEIDEL, H.
2007. Real-time quadtree analysis using HistoPyramids. In IS&T
and SPIE Conference on Electronic Imaging, vol. 6496. 0L.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

76


