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Figure 1: A screenshot of the simulation.

Abstract

Simulation and visualization of emergent crowd in real-time is a
computationally intensive task. This intensity mostly comes from
the O(n2) complexity of the traversal algorithm, necessary for the
proximity queries of all pair of entities in order to compute the rel-
evant mutual interactions. Previous works reduced this complexity
by considerably factors, using adequate data structures for spatial
subdivision and parallel computing on modern graphic hardware,
achieving interactive frame rates in real-time simulations. How-
ever, the performance of existent proposals are heavily affected by
the maximum density of the spatial subdivision cells, which is usu-
ally high, yet leading to algorithms that are not optimal. In this
paper we extend previous neighborhood data structure, which is
called neighborhood grid, and a simulation architecture that pro-
vides for extremely low parallel complexity. Also, we implement a
representative flocking boids case-study from which we run bench-
marks with simulation and rendering of up to 1 million boids at
interactive frame-rates. We remark that this work can achive a min-
imum speeup of 2.94 when compared to traditional spatial subdivi-
sion methods with a similar visual experience and with lesser use
of memory.
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1 Introduction

In a typical natural environment it is common to find a huge number
of animals, plants and small dynamic particles. This is also the case
in other densely populated systems, such as sport arenas, communi-
ties of ants, bees and other insects, or even streams of blood cells in
our circulatory system. Computer simulations of these systems usu-

ally present a very limited number of independent entities, mostly
with very predictable behavior. There are several approaches that
aim to include more realistic behavioral models for crowd simula-
tion such as [Reynolds 1987; Musse and Thalmann 1997; Shao and
Terzopoulos 2005; Pelechano et al. 2007; Treuille et al. 2006].

Algorithms for massive crowd simulation are driven by the need
to avoid the O(n2 ) complexity of the proximity queries between
entities. Several approaches have been proposed to cope with this
issue [Reynolds 2000; Chiara et al. 2004; Courty and Musse 2005]
but none of them has reached an ideal level of scalability. As far as
we know, no work until the present date has proposed a real time
simulation of more than just a few thousands of complex entities
interacting with each other. Applications for these computation-
ally demanding algorithms range over crowd behavior prediction
in emergency scenarios, street traffic simulation and enrichment of
computer game worlds.

Non-graphics algorithms traditionally executed on the CPU, such as
behavioral artificial intelligence algorithms, are sometimes suitable
for parallel execution, which makes them appropriate to be imple-
mented on the GPU [Joselli et al. 2008]. However, the first applica-
tions of GPUs performing general purpose computation (GPGPU)
had to rely on the adaptation of graphics rendering APIs to differ-
ent concepts, leading to a difficult learning curve and sometimes not
very efficient data structures for the proposed solutions. The CUDA
[NVidia 2009], CAL [AMD 2007] and OpenCL [Group 2009] tech-
nologies aim to provide a new abstraction layer on top of graphics
hardware to facilitate its usage for non-graphics processing. Crowd
simulation that explores this programming model on the GPU is a
promising line of research.

Most of the research on crowd simulation tries to avoid the high
complexity of proximity queries by applying some form of spatial
subdivision to the environment and classifying entities among the
cells based on their position. To accelerate data fetching in a par-
allel hardware (such as GPUs) the entities list must be sorted in
such a way that all entities on the same cells are grouped together.
This approach helps lowering the number of proximity queries but
is very sensible to the maximum number of entities that can fit in
a single cell. In this paper instead of using a similar approach,
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we propose a novel simulation architecture that maintains entities
into another kind of proximity based data structure, which we call
“neighborhood grid”. In this data structure, each cell now fits only
one entity and does not directly represent a discrete spatial subdi-
vision. The “neighborhood grid” is an approximate representation
of the system of neighborhoods of the environment that maps the
N-dimensional environment to a discrete map (lattice) with N di-
mensions, so that entities that are close in a neighborhood sense,
appear close to each other in the map. Another approach is to think
of it as a multi-dimensional compression of the environment that
still keeps the original position information of all entities.

The entities are simulated and sorted as Cellular Automata with Ex-
tended Moore Neighborhood [Sarkar 2000] over the neighborhood
grid, which is an ideal case for the memory model of GPUs. We
argue and show that this approximate simulation technique brings
a new bound to crowd simulation performance, maintainning the
believability for entertainment contexts. The high performance and
scalability are achieved by a very low parallel complexity of the
model.

To keep the “neighborhood grid” aligned this work shows a previ-
ous implementation of a partial sorting mechanism, a partial odd-
even sort, and a new sorting scheme, a bitonic sort, that can keep a
much better visual experience with similar performance.

To illustrate and evaluate the “neighborhood grid”, we implement
a traditional emergent behavior model of flocking boids [Reynolds
1987] that has a minimum speedup of 2.94 over the tradition spa-
tial hashing methods [Reynolds 2000; Reynolds 1999], with similar
visual experience. The architecture can be further extended to any
other simulation model that rely on dynamic autonomous entities
and neighborhood information.

Summaryzing, this work is an extension of the work [Passos et al.
2008], with the following enhancements, which are the main con-
tributions of these paper:

• Extension of the data structure for 3D environments;

• Presentation of a new sorting scheme that keeps a better visual
experience with similar performance;

• Comparison of performance between our method and the
tradition spatial hashing method [Reynolds 2000; Reynolds
1999] which was also implemented by this work.

The paper is organized as follows: Section 2 discusses related work
on crowd simulation. Sections 3 explain the proposed “neighbor-
hood grid”, the data structures, the simulation steps in 3D and a
simplification of the “neighborhood grid” for 2D systems. Section
4 describes the particular behavior model used to validate the pro-
posed architecture. Section 5 brings the experimental results and
analysis of the implemented simulation model. Finally, section 6
concludes the paper with a discussion on future work.

2 Related Work

The first known agent-based simulation for groups of interacting
animals is the work proposed by Craig Reynolds [Reynolds 1987],
in which he presented a distributed behavioral model to perform this
task. His model is similar to a particle system where each individual
is independently simulated and acts accordantly to its observation
of the environment, including physical rules such as gravity, and in-
fluences by the other individuals perceived in the surroundings. The
main drawback of the proposed approach is the O(n2) complexity
of the traversal algorithm needed to perform the proximity tests for
each pair of individuals. This was such an issue at the time that
the simulation had to be run as an offline batch process, even for a
limited number of individuals. In order to cope with this limitation,
the author suggested the use of spatial hashing. This work also in-
troduced the term boid (abbreviation for birdoid) that has been used
to designate generic simulated flocking creatures ever since.

Musse and Thalmman [Musse and Thalmann 1997] propose a
more complex modeling of human motion based on internal goal-
oriented parameters and the group interactions that emerge from
the simulation, taking into account sociological aspects of human

relations. Others include psychological effects [Pelechano et al.
2007], social forces [Cordeiro et al. 2005] or even knowledge and
learning aspects [Funge et al. 1999]. Shao and Terzopoulos [Shao
and Terzopoulos 2005] extend the latter including path planning
and visibility for pedestrians. It is important to mention that these
proposals are mainly focused on the correctness aspects of behavior
modeling. The data structures and algorithms used by these works
are not suitable for real-time simulation of very large crowds, which
is one of the goals of this work.

Reynolds further enhanced his behavioral model to include more
complex rules and to achieve the desired interactive performance
by the use of spatial hashing [Reynolds 2000; Reynolds 1999].
This implementation could simulate up to 280 boids at 60 fps in
a Playstation 2 hardware. By using the spatial hash to classify the
boids into a grid, the proximity query algorithm could be performed
against a reduced number of pairs. For each boid, only those inside
the same grid cell and at adjacent ones, depending on its position,
were considered. This strategy leads to a sequential complexity that
is closer to O(n). This complexity, however, is highly dependent
on the maximum density of each grid cell, which can be very high
if the simulated environment is large and dense. We remark that the
complexity of our neighborhood grid is not affected by the size of
the environment or the distribution of the boids over it.

Quinn et al. [Quinn et al. 2003] used distributed multiprocessors
to simulate evacuation scenarios up to 10,000 individuals at 45 fps
on a cluster connected by a gigabit switch. More recently, a simi-
lar spatial hashing data-structure was used by Reynolds [Reynolds
2006] to render up to 15,000 boids in Playstation 3 hardware at in-
teractive framerates, but with a reduced simulation frame rate of
around 10 fps. Due to the distributed memory of both architec-
tures, it is necessary to copy compact versions of the buckets/cells
of boids to the individual parallel processors before the simulation
step could run, copying them back at the end of it to perform the
rendering, which leads to a potential performance bottleneck for
larger sets of boids. This issue is evidenced in [Steed and Abou-
Haidar 2003], where the authors span the crowd simulation over
several network servers and conclude that moving individuals be-
tween servers is an expensive operation.

The use of the parallel power of GPUs in massive crowd simulation
is very promising but brings another issue, related to its intrinsic de-
pendency on data-locality to achieve high performance in this kind
of hardware. For agent-based simulations that rely on spatial hash-
ing, it is desired that the individuals should be sorted through the
data-structure based on their cell indexes. The work by Chiara et.
al. [Chiara et al. 2004] makes use of the CPU to perform this sort-
ing. To avoid the performance penalty, this sorting task is triggered
only when a boid departs from its group, which is detected by the
use of a scattering matrix. This system could simulate 1,600 boids
at 60 fps including the rendering of animated 2D models. Also the
work by Silva et al. [Silva et al. 2008] implement a similar work,
but it focus on the optimization of the algorithm by doing occlusion
based on the vision of the boids. The FastCrowd system [Courty
and Musse 2005] was also implemented with a mix of CPU and
GPU computation to simulate and render a crowd of 10,000 indi-
viduals at 20 fps as simple 2D discs. Using this simple rendering
primitive, the GPU was also capable of simultaneously computing
the flow of gases on an evacuation scenario. A more recent work
in the GPGPU field by Shopf et. al. [Shopf et al. 2008] presents
an implementation that runs entirely on the GPU and can simulate
and render 3,000 high detailed animated models or 65,000 simple
primitives at real-time frame rates. Our implementation also runs
entirely on the GPU and makes use of the fact that groups tend to
move as blocks and uses a parallel sorting algorithm on the GPU to
achieve even higher performance, as explained in the next sections.

The simulation architecture and data-structures proposed by
[Treuille et al. 2006] depart from the agent-based models presented
so far. These authors uses a 2D dynamic field to represent both
the crowd density and the obstacles of the environment. The in-
dividuals navigate through and according to this continuum field.
Treuille et al argue that locally controlled agents, while provid-
ing for complex emergent behavior, are not an appropriate model
for goal-driven individuals, such as human pedestrians. The im-
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plemented system could simulate up to 10,000 humans at 5 fps
(without graphics) even with the inclusion of a dynamic environ-
ment such as traffic lights. The continuum field is an interesting
approach but limits the environment to a predetermined size.

In the work [Passos et al. 2008], which this work extends, is imple-
mented a crowd simulation system on the GPU where each boid is
modeled as a cellular automaton [Sarkar 2000] in a 2D data struc-
ture. This work could achieve the simulation and renderization of
up to 1 millions boids at interactive frame rates. The present paper
extends that previous work to 3D environments keeping the same
performance. As far as we are aware, no other work in the litera-
ture presents such a high performance.

This cellular automata model matches perfectly with the ideal local-
ity for data fetching on graphics hardware but imposes that boids in-
formation have to be kept reasonably sorted over this data structure
during simulation. Our proposal, such as most of the above work,
is based on distributed agents to yield emergent behaviour, but the
novel data-structures are suitable for unlimited environment size
and better scalability over both the number of entities and neigh-
bourhood reach.

3 Simulation Architecture

Individual entities in crowd behavior simulations depend on ob-
servations of their surrounding neighbors to decide which actions
to take. The straightforward implementation of the neighborhood
finding algorithm has a complexity of O(n2), for n entities, since
it performs at least one proximity query for each entity pair in
the crowd. Individuals are autonomous and can move during each
frame, which leads to a very computationally intesive task.

Techniques of spatial subdivision have been used to group and sort
these entities in order to accelerate the neighborhood finding task.
Current implementations are usually based on variations of rela-
tively coarse subdivisions techniques, such as a grid over the con-
sidered environment. After each update, all entities have their grid
cell index calculated based on their latest locations. For GPU based
solutions, some kind of sorting based on this index has to be per-
formed in order to benefit from the read-ahead and caching mech-
anisms of such hardware. This way, neighbor entities in geometric
space are stored near each other over the data structure. However,
static subdivisions have some limitations when simulating large ge-
ometric spaces, where the size of each grid cell may fit a large num-
ber of entities. This issue limits the neighborhood finding problem
by a hidden O(n2 ) complexity factor in the worst case scenario.

In this work we propose another approach for the neighborhood
finding problem. This approach uses a grid data structure, which
we call “neighborhood grid” that is used to store information about
all the entities. In this “neighborhood grid”, each entity is mapped
in a individual cell (1:1 mapping) accordingly to its spatial location,
so that entities that are close in a neighborhood sense, appear close
to each other in the grid. In order to keep the “neighborhood grid”
mapped accordingly to the spatial location, a sorting mechanism is
needed. To fulfill that need, we present two sorting mechanism, one
partial odd-even sort and one bitonic sort.

This simulation architecture can be described as a continuous loop
with the following steps:

• Sorting pass (re-organizes the neighborhood grid);

• Simulation pass (updates position and orientation);

• Rendering pass (draws visible entities).

The following subsections describe the architecture. In the next
subsection the “neighborhood grid” is explained. The role of sort-
ing and the types of simulation algorithms suitable to the proposed
architecture are also explained in following subsections. Also in
the last part of this section we show a simplified version of the data
structures for 2D simulations.

3.1 3D Proximity Data Structure: The Neighbor-
hood Grid

The proposed architecture was developed with CUDA technology
[NVidia 2009], and, in order to keep the processing entirely at the
GPU, all information about entities is mapped as textures for the
display-list and vertex shader rendering. The minimum information
required for each entity are: position (a vector, representing the
position of the entity), speed (a vector for storing the orientation
and velocity in a single structure) and type (an integer that can be
used to differentiate entity classes).

This information is stored in 3D arrays (grid), where each position
holds the entire data for an individual entity. In this case two grids
are required, one for the 3D position and another for the orientation
with the entity type variable kept at a fourth value in one of these
grids. The grid that contains the position vector for the entities is
then used as a sorting structure. In this data structure, each cell fits
only one entity. Figure 2 illustrates how a randomly distributed set
of entities would be arranged in the “neighborhood grid” when cor-
rectly sorted. The smaller circles represent entities that are further
away from the viewpoint.

Figure 2: An example of a distribution of entities in the neighbor-
hood grid. Entities that are further away from the viewpoint are
illustrated by small circles.

In this work we use a form of neighborhood gathering that is known
as Extended Moore Neighborhood [Sarkar 2000] in the Cellular
Automata theory. Figure 3 illustrates this structure with a 2D matrix
holding arbitrary information for 36 individual entities. To reduce
the cost of proximity queries, each entity will only gather infor-
mation about the entities surrounding its cell, based on a constant
radius. In the example of Figure 3, this radius is 2, so the entity
represented at cell (2,2) (in gray) would have access to the 24 high-
lighted surrounding cells/entities (in green) only.

Boid

Extended Moore Neighborhood

Radius = 2

Figure 3: Example of the Structure of the Extended Moore Neigh-
borhood with 36 entities and radius = 2.

Our work extends this matrix example to a 3D grid maintaining the
same form of information gathering, only adding the extra dimen-
sion. Figure 4 illustrates our neighborhood grid with a neighbor-
hood radius of 1.

This kind of spatial data structure and extremely regular informa-
tion gathering enables a good prediction of the performance, since
the number of proximity queries will always be constant over the
simulation. This happens because instead of making these proxim-
ity queries over all entities inside a coarse grid bucket/cell (variable
quantity), such as in traditional implementations, each entity would
query only a fixed number of surrounding individual neighbors.
However, this matrix has to be sorted continually in such a way that
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Figure 4: Example of the neighborhood grid with radius = 1.

those entities which are neighbors in geometric space are stored in
individual cells that are close to each other. This guarantees that
each entity should gather information about its closest neighbors.
Depending on the simulation (and the sorting step), some misalign-
ment may occur over the data structure, causing that some of the
neighbor entities are missed by the gathering step. However, the
larger the Moore radius is, less likely it is to happen such issue,
which we could observe during the experiments.

3.2 Sorting Pass

The position information of each entity is used to perform a lexi-
cographical sort based on the three dimensions of this vector. The
goal is to store in the closer-bottom-leftmost cell of the grid the
entity with the smaller values for Z, Y and X, and in the far-top-
rightmost cell the entity with highest values of Z, Y and X respec-
tively. Using these three values to sort the matrix, the farthest lines
will be filled with the entities with the higher values of Z while the
top lines will be filled with the entities with higher values of Y and
the right columns will store those with higher values for X and so
on. This kind of sorting provides for the approximate neighborhood
query that is optimal in terms of data locality.

When performing a sorting over an one dimension array of float
point values, the goal is that given an array A, the following rule
must apply at the end:

• ∀A[i] ∈ A, i > 0 ⇒ A[i-1] ≤ A[i].

Extending this rule to a grid G where each cell has three float point
values X, Y and Z:

1. ∀G[i][j][k] ∈ G, k > 0, G[i][j][k].Z ≤ G[i][j][k-1].Z;

2. ∀G[i][j][k] ∈ G, k > 0, G[i][j][k − 1].Z = G[i][j][k].Z ⇒
G[i][j][k].X ≤ G[i][j][k-1].X;

3. ∀G[i][j][k] ∈ G, k > 0, G[i][j][k − 1].Z =
G[i][j][k].Z AND G[i][j][k].X ≤ G[i][j][k − 1].X ⇒
G[i][j][k].Y ≤ G[i][j][k-1].Y;

4. ∀G[i][j][k] ∈ G, j > 0, G[i][j][k].Y ≤ G[i][j-1][k].Y;;

5. ∀G[i][j][k] ∈ G, j > 0, G[i][j − 1][k].Y = G[i][j][k].Y ⇒
G[i][j][k].Z ≤ G[i][j-1][k].Z;;

6. ∀G[i][j][k] ∈ G, j > 0, G[i][j − 1][k].Y =
G[i][j][k].Y AND G[i][j − 1][k].Z ≤ G[i][j][k].Z ⇒
G[i][j][k].X ≤ G[i][j][k-1].X;

7. ∀G[i][j][k] ∈ G, i > 0, G[i][j][k].X ≤ G[i-1][j][k].X;

8. ∀G[i][j][k] ∈ G, i > 0, G[i− 1][j][k].X = G[i][j][k].X ⇒
G[i][j][k].Y ≤ G[i-1][j][k].Y;

9. ∀G[i][j][k] ∈ G, i > 0, G[i − 1][j][k].X =
G[i][j][k].X AND G[i][j][k].Y ≤ G[i − 1][j][k].Y ⇒
G[i][j][k].Z ≤ G[i-1][j][k].Z;

The architecture is independent of the sorting algorithm used, as
long as the rules above are always, eventually or even partially
achieved during simulation, depending on the desired neighbor-
hood precision. In this work we show a partial odd-even sort, which
makes a partial sort in each dimension and a bitonic sort [Batcher
1968], which make a full sort in each dimension.

3.2.1 Partial Odd-Even Sorting

Here we present an inherently parallel (but not optimal) partial sort
strategy: an odd-even transposition sort, with only one odd-even
pass per update. The odd-even transposition sort is similar to the
bubble sort algorithm and it is possible to complete a partial pass,
traversing the whole data structure, in O(n) sequential time or O(1)
parallel complexity when running on n CUDA threads (if available
on the GPU). Because there are two steps, one for odd and other for
even elements (for each axis), this algorithm is suitable for parallel
execution.

This sorting pass must be spread into six steps, one for odd and
one for even elements for each axis. The first step runs the sorting
between each entity position vector of the even columns against
its immediate neighbor in the subsequent odd column. If the rules
described by Eq.1, Eq. 2 or Eq.3 are violated, the entities switch
cells in the grids. The other six sorting steps perform the same
operation for the odd column of the Z and the similar steps over the
Y and X axis.

From tests we have seen that with this partial sort more than 10%
of entities are in the wrong place on the “neighborhood grid” when
comparing with a full sort on the entire grid. So this sorting mech-
anism only seems viable on simulation that does not need a lot of
precision, or that the entities does not change position very often.
Otherwise the use of the bitonic sort is advised, which is present
next.

3.2.2 Bitonic Sorting

The bitonic sort [Batcher 1968] is simple parallel sorting algorithm
that is very efficient when sorting small number of elements [Blel-
loch et al. 1998], which is our case since our sort strategy is divided
by dimensions. Our implementation is an optimized and adapted
version based on a demo from nVidia [nVidia 2008]. This sort is
divided in 3 passes, one for each dimension (X,Y and Z).

The complexity of this algorithm is O(nlog(n)2) being n the num-
ber of elements to sort in sequential time. This comparisons are di-
vided in n CUDA threads making the algorithm in this parallel im-
plementation with a complexity of O(log(n)2), if there is n stream
processors on the GPU.

This sorting does not make a full sort on the “neighborhood grid”
only a full sort on each dimension (X,Y and Z) of the grid. So, for
example, if a change in one entity position on the Y pass, another
pass for the X would be needed in order to keep the “neighborhood
grid” with an full sort. But from tests we have seen that this mis-
aligned is very small, less than 1% of the entities changes place in
one step of the simulation, and in the next step this error will be
fixed, and the use of a full sort on the “neighborhood grid” would
impose some lost in performance without visible gain in the simu-
lation.

3.3 Simulation Pass

The simulation pass can perform any kind of emergent crowd be-
havior for entities that are constrained to the knowledge of data
in their surrounds, such as flocking boids, swarms or pedestrian
groups. This pass must be implemented as a CUDA kernel func-
tion that receives as arguments at least the position and orientation
of each entity (double buffered as input and output) and the time
elapsed since the last step. This kernel function is then executed
in parallel with one CUDA thread for each entity. This function
uses the data from the previous step for the respective entity and its
neighbors and calculates new values for its entity only, which must
be written to the same cell in the output grid.

In Section 4, an example of a flocking boids simulation pass is de-
scribed. The implementation of such simulation in our architecture
is evaluated in Section 5. The following subsection is dedicated to
explain the 2D version of the presented data structures.
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3.4 Simulation Architecture with 2D Proximity:
The Neighborhood Matrix

The 2D proximity is a simplification of the 3D proximity with only
the X and Y (or Z) dimension. In this case, the proximity data
structure used is a “neighborhood matrix” instead of the 3D “neigh-
borhood grid”, but with similar extended Moore neighborhood as
showed in figure 3. The sorting pass is a simplified one with just
the X and Y passes.

We remark that the term 2D mentioned refers only to the spatial
nature of the data structure, which is still suitable for a simple 3D
simulation where the entities do not traverse the third dimension too
much such as a pedestrian crowd. For more complex simulations
where entities move freely over the third axis, such as swarm of
bees, we recommend using the 3D version of the proximity data
structure.

4 Case-Study: Flocking Boids

For the purpose of validating the proposed technique, we choose
to implement a well known distributed simulation algorithm called
flocking boids [Reynolds 1987]. This is a good algorithm to use
because of its good visual results, proximity to real world behavior
observation of animals and understandability. The implementation
of the flocking boids model using our “neighborhood grid” enables
real time simulation with up to one million animals of several types,
with a corresponding visual feedback as shown in the experiments
described the next section.

Our model simulates a crowd of animals interacting with each other
and avoiding random obstacles around the continuous 3D space.
This simulation can be used to represent from small bird flocks to
huge and complex terrestrial animal groups. Boids from the same
type (representing species) try to form groups and avoid staying
close to the other types. The number of simulated entities/boids
and types is limited only by technology but, as demonstrated in the
next section, our method scales very well due to the data structures
used. In this section we focus on the extension of the concepts
of cellular automata in the simulation step, in order to represent
emergent animal behavior.

To achieve a believable simulation we try to mimic what is observ-
able in nature: many animal behaviors resemble that of cellular au-
tomata, where a combination of internal and external factors (from
neighbor cells) defines which actions are taken and how they are
done. With this approach, internal state is represented by position,
speed (also orientation) and the boid type, and external information
reffers to visible neighbors, depending on where the boid is looking
at (orientation), and their relative distances.

Our simulation algorithm computes these influences for each boid:
flocking (grouping, repulsion, and direction following); leader fol-
lowing; and repulsion from other types of boids (that can be used
also for obstacle avoidance). Additionally, there are constant multi-
plier factors which dictate how each influence type may get blended
with another. In order to enable a richer simulation, these factors are
stored independently for each type of boid in separate arrays. More
information about the behavior used in this work refer to [Passos
et al. 2008].

5 Performance and Analysis

In this work, we implemented and tested the flocking boids case-
study using the “neighborhood grid” and also evaluated the render-
ing of all boids. The rendering consists of a simple display list that
is repeated for each entity/boid using the position and orientation
information gathered from a texture that is bound from the output
VBO of the CUDA simulation in a vertex shader as can be seen on
Figure 5.

All tests in this work were performed on an Intel Core 2 Quad
2.4GHz CPU with 3GB of RAM and equipped with an NVidia 8800
GTS GPU (that has 96 stream processors) and the operating system
is Windows Vista. Each instance of the test ran for 300 seconds.
The average time to compute a frame (and subsequent frames per

Figure 5: Simulation with 32K boids.

second) was recorded for each experiment. To assure the results
are consistent, each test was repeated 10 times and the standard de-
viation of the average times confirmed to be within 3%. All tests
results includes the simulation calculation and also the renderiza-
tion to the screen.

To evaluate the scalability of the architecture, we varied the number
of entities/boids being simulated (from 1 thousand to 1 million) and
the Moore neighborhood radius (from 1 to 4). At preliminary tests,
we observed that the number of different boid types had no observ-
able influence on the performance, so a fixed number of 4 types
was used for all experiments. In order to fully evaluate the speedup
of this architecture for crowd simulation over the traditional spa-
tial hashing method based on [Reynolds 2000; Reynolds 1999], we
have implemented the spatial hasing scheme in GPU with the use
of CUDA. This implementation has the same flocking behavior as
the one implemented in our architecure.

Table 1 shows the results of the simulation in frames per second,
for all experiments in 3D with the partial odd-even sort compared
with the traditional spatial hashing. We can notice that the sim-
ulation runs at interactive frame-rates even with 1 million boids.
With the use of the partial odd-even sort, we see the best visual
performance with radius 4, but we can still see some strange behav-
ior some times, i.e, collision and behaviors that should not happen.
With this radius we have a minimum speedup of 1.86 when com-
pared with the traditional spatial hash method.

Table 2 shows the results of the simulation in frames per second,
for all experiments in 3D with the bitonic sort compared with the
traditional spatial hashing. With the use of the bitonic sort, we see
the best visual performance with radius 2. With this radius we have
a minimum speedup of 2.94 when compared with the traditional
spatial hash method.

From this results we can see that the bitonic sort is faster than the
partial odd-even sort when there are less than 32,768 entities. This
happens mainly because the bitonic sort does 1 pass for each di-
mension while the partial odd-even sort does 2 passes for each di-
mension. Also using the best radius for visual experience (radius 2
for the bitonic sort and radius 4 for the partial odd-even sort), we
can see that the bitonic sort have minimum speedup of 1.16 over the
partial odd-even sort. We suggest that for the best visual and per-
formance crowd simulation, to use the presented architecture with
bitonic sort and the radius 2.

Table 3 shows how much memory for the presented architecture,
which is the same for both sorting mechanisms and different neigh-
borhood radius, and for the spatial hash. From this results we can
see that this architecture spends much less memory since it does not
needs a lot of memory to keep the data structure having consuming
memory in a linear form, while the spatial hash does needs at least
2 MB for keeping the data structure.

Figure 6 shows how the time are spent in % with each step of the
simulation (with the data structure, the behavior and the memory
copy) during the simulation with 32,769 boids for the bitonic sort
(with radius 2), odd-even sort (with radius 4) and spatial hash. This
shows that the spatial hash uses 35 % of its time processing the its
data structure while the bitonic sort spends 25% and the odd-even
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Table 1: Numerical results of the architecture running with a partial odd-even sort compared with the spatial hash.

Partial Odd-Even Sort
# Spatial Hash Radius=1 Radius=2 Radius=3 Radius=4

Boids Fps FPS Speedup FPS Speedup FPS Speedup FPS Speedup

1,024 370 860 2.35 710 1.92 695 1.87 688 1.86

32,768 72 222 3.08 200 2.78 185 2.57 166 2.30

131,072 18 68 3.78 63 3.50 57 3.17 51 2.83

524,288 4.00 19 4.75 17 4.25 15 3.75 12 3.00

1,048,576 0.50 9.72 19.55 8.60 17.20 7.41 14.84 6.25 12.50

Table 2: Numerical results of the architecture running with a bitonic sort compared with the spatial Hash.

Bitonic Sort
# Spatial Hash Radius=1 Radius=2 Radius=3 Radius=4

Boids Fps FPS Speedup FPS Speedup FPS Speedup FPS Speedup

1,024 370 1,155 3.12 1,118 3.02 1,109 3.00 1,099 2.97

32,768 72 212 2.94 197 2.74 178 2.47 164 2.28

131,072 18 62 4.50 58 3.22 53 2.94 48 2.67

524,288 4.00 18 4.50 16 4.00 14 3.50 12 3.00

1,048,576 0.50 8.45 16.90 7.49 14.98 6.64 13.28 6.20 12.40

Table 3: Use of the memory when using the Spatial Hash and this
architecture.

# Use of Memory
Boids Spatial Hash Neighborhood Grid

1,024 2.1 MB 5.6 KB

32,768 2.3MB 180 KB

131,072 3 MB 721 KB

524,288 5.5 MB 2.9 MB

1,048,576 9 MB 5.8 MB

only 14%.

Figure 6: Comparison of the % of use between the Bitonic Sort,
Odd-even partial sort and Spatial Hash.

Figure 7 shows comparison between the spatial hashing and the two
sorting schemes, showing how the time to compute and render each
frame grows with the number of boids using the the same radius 2
for the bitonic sort and radius 4 for the partial odd-even sort. These
plot uses a logarithmic scale in both axis (due to the growth on the
number of boids in the experiments) which shows that there is a
linear (and not quadratic) relation between the number of boids and
the computing cost, for our architecture.

Also we have tested the architecture with the simplified data struc-
ture for 2D simulations (the “neighborhood matrix”). The results
show gains from 10 to 20 % in speedup when compared with the
3D simulation. The reason for this performance difference is not
related to the simulation itself, but to the fact that in 3D the num-
ber of candidate neighbors is higher, leading to more memory reads

for each boid. For instance, with a radius of 1 each boid agent in
2D reads its 8 immediate neighbors, while in 3D this number (with
the same radius) grows to 26. The architecture is also implemented
in the CPU so it can be used in computers that does not have GPU
with CUDA. In this case it can only simulate and render up to 8,000
boids in real time.

6 Conclusion

In this paper we have shown an extension of a novel technique for
simulating emergent behavior of dynamic entities in a densely pop-
ulated environment. We have extended all of our data structure to
higher dimension (3D) in order to deal with 3D scenes. We also
have implemented and compared two sorting techniques to be used
with the architecture, one partial odd-even sort and one bitonic sort.
We have seen, from visual experience and numerical test, that for
simulating flocking boids the partial odd-even sort is not the best
approach when precision is needed, since it keeps a high error in
the “neighborhood matrix” of more than 10 % on the grid and this
error can be perceved visualy in the simulation by the boids’ be-
havior and collisions. With the best radius for visual experience,
radius 2 for the bitonic sort and radius 4 for the partial odd-even
sort, we have a speedup of 1.16 with the use of the bitonic sort over
the partial odd-even sort.

This architecture is capable of interactively simulating and render-
ing up to 1 million of individual flocking boids in real time, while
the traditional spatial hashing methods expends 2 seconds for exe-
cuting each frame. And with the use of our architecture with bitonic
sort and a radius 2, we experience a similar visual simulation as
with the spatial hashing method with expressive speedup. The au-
thors of this work suggest using this configuration, the presented
architecture with bitonic sort and the radius 2, to achieve best vi-
sual and performance crowd simulation.

The data structures developed for 3D and 2D approximate neigh-
borhood queries lead to very low parallel complexity and are suit-
able for several different simulation algorithms, as long as they can
be modeled as cellular automata with Extended Moore Neighbor-
hood.

As future work we plan to extend this architecture to enable the
representation of more complex geometric obstacles such as build-
ings, terrains or mazes. These augmented data structures and more
complex algorithms are being designed in order to achieve more
realistic simulations, and consequently providing for a even more
believable virtual environment. This project is being developed as
a crowd simulation framework where programmers can plug in their
chosen sorting and simulation strategies.

While our performance evaluations do not render a complex geome-
try for each entity, we argue that the performance penalty for adding
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Figure 7: Comparison of the evolution between the spatial hash and the bitonic and partial odd-even sort.

such rendering at the end of the simulation can be easily predicted.
To do so, we suggest to add the provided computational cost of
the sorting and simulation passes (time spent in mili-seconds, with
variable numbers of entities and neighborhood radius) to that of a
VBO + vertex shader transforming and pixel shader lighting of sev-
eral copies of the same display list, with more complex geometries,
which can be found in published literature.

References

AMD, 2007. Amd stream computing. Avali-
ble at: http://ati.amd.com/technology/

streamcomputing/firestream-sdk-whitepaper

.pdf. Acessed in 20/02/2009.

BATCHER, K. E. 1968. Sorting networks and their applications. In
AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968,
spring joint computer conference, ACM, New York, NY, USA,
AFIPS, 307–314.

BLELLOCH, G. E., PLAXTON, C. G., LEISERSON, C. E., SMITH,
S. J., MAGGS, B. M., AND ZAGHA, M., 1998. An experimental
analysis of parallel sorting algorithms.

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In Vision, Modeling,
and Visualization (VMV), VMV, 233–240.

CORDEIRO, O. C., BRAUN, A., SILVEIRA, C. B., AND MUSSE,
S. R. 2005. Concurrency on social forces simulation model.
In Proceedings of the First International Workshop on Crowd
Simulation (V-CROWDS), V-CROWDS.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, CGI, 206–212.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. In Siggraph 1999, Computer Graphics Proceedings,
Addison Wesley Longman, Los Angeles, A. Rockwood, Ed.,
Siggraph, 29–38.

GROUP, K., 2009. Opencl - the open standard for paral-
lel programming of heterogeneous systems. Avalible at:
http://www.khronos.org/opencl/.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJÓ, PAGLIOSA, P.
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