
trAIns: An Artificial Inteligence for OpenTTD

Luis Henrique Oliveira Rios, Luiz Chaimowicz

Departamento de Ciência da Computação

Universidade Federal de Minas Gerais

Figure 1: The four transport types available in OpenTTD: aerial, maritime, railroad and road.

Abstract

Simulation games present several challenges for computer con-
trolled players. As a result of this, most of the artificial intelligence
algorithms developed so far, especially for construction and man-
agement simulation games, do not give satisfactory results when
compared to human performance. In this paper we develop an AI
to control an agent of OpenTTD, a open-source clone of Transport
Tycoon Deluxe, one of the premier construction and management
simulation games. To do this, we create and adapt artificial intelli-
gence techniques to allow their use in a dynamic, multi-agent strate-
gic environment. Named trAIns, the developed AI constructs and
manages railroad routes, the most challenging transport type in the
game. Several qualitative and quantitative experiments comparing
trAIns with another AI are performed, bringing very good results.

Keywords: Artificial Intelligence, Construction and Management
Simulation Games, Path Planning, OpenTTD.

Author’s Contact: {lhrios, chaimo}@dcc.ufmg.br

1 Introduction

The advances in hardware and software have allowed game devel-
opers to improve the quality of digital games, augmenting their de-
gree of immersion and realism. The increase in game complexity
has demanded the development and adaptation of techniques to deal
with a great number of variables and details still respecting time
constraints. In this context, the research and development of artifi-
cial intelligence algorithms have gained importance. The quality of
other game elements such as graphics and gameplay has increased
players’ expectations regarding artificial intelligence. Thus, it is
becoming one of the main components of digital games and should
have a level of sophistication similar to other game elements.

In digital games, artificial intelligence algorithms are responsible
for making decisions and determining actions of game agents - we
will call agent a character or institution in the game that is con-
trolled by a computer. A general metric is that these algorithms
must generate actions and decisions resulting in behaviors similar
to the ones caused by human players [Byl 2004]. A common prob-
lem faced by these algorithms is the time constraints. Despite the
increase of computational resources available, the response time is
critical because most of the games happen in a dynamic, fast paced
environment. These requirements demand an adaptation of classi-
cal approaches and the development of new AI algorithms.

In this paper, we are interested on artificial intelligence algorithms
for simulation games. Among the several existing modalities, we
focus on a style called simulation of construction and management
(as stated by [Rollings and Adams 2003] taxonomy). Some classi-
cal examples are: Capitalism, Caesar, SimCity and Transport Ty-
coon. In this game style, the player’s main goal is to construct,

manage and expand communities, institutions, companies or em-
pires using limited resources. Because of the complexity involved
in constructing and managing resources as well as the time restric-
tions, artificial intelligence algorithms suitable for these games are
not sophisticated - to our knowledge, there are few artificial intel-
ligence techniques developed for simulation games that are able to
deal well with these issues. Therefore, when compared to human
players, the generated behavior is poor.

Thus, the main objective of this paper is to adapt, implement and
evaluate artificial intelligence algorithms to control agents in con-
struction and management simulation games. In particular, this
work considers AI algorithms that will be used to control an agent
in a game called OpenTTD [OpenTTD 2009].

OpenTTD is an open-source clone of Transport Tycoon Deluxe, a
game released in 1994. The main objective is to construct and man-
age routes to become the transport tycoon. To achieve this, play-
ers must build lucrative transport routes connecting industries and
cites. There are four kinds of transport types (figure 1): railroad,
road, aerial and maritime. Normally, the most used is the railroad
since it is capable of carrying much cargo for great distances in a
fast way. It is also the most challenging one as will be discussed.

In this paper, we will use the acronym AI to denote a set of algo-
rithms that control an agent in the game. These algorithms are im-
plemented using a specific API and can play against human players.
Currently, there are about 13 AIs available for the game, but only
four use railroads. These AIs have several problems in common -
part of them caused by the naive approaches adopted. For exam-
ple, they can not build complex railroads, are not able to plan large
routes, can not change the railroad track type and use poor algo-
rithms to choose the locomotive engines. Furthermore, the design
of tracks constructed by the AI is very different from the ones built
by human players. These problems affect the performance of the
company controlled by the computer and influence the gameplay.

Thus, the main contribution of this work is the development of
trAIns, an AI specifically developed for the construction and man-
agement of railroads in OpenTTD. Adapting traditional AI algo-
rithms such as A* and proposing new techniques for a dynamic,
multi-agent environment, trAIns solves most of current OpenTTD
AIs’ problems and introduces many other improvements. trAIns is
evaluated qualitatively, analyzing its construction decisions as well
as quantitatively, comparing its performance against Admiral AI,
the most complete AI current available in the game.

This paper is organized as follows: next section presents OpenTTD,
describing its main features. Section 3 discusses several aspects re-
lated to the development of intelligent agents for playing OpenTTD.
In section 4, we introduce trAIns and in section 5 we present the
experimental results. Finally, Section 6 brings the conclusions and
possibilities for future work.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

185

2 OpenTTD

As mentioned, OpenTTD is an open-source clone of Transport Ty-
coon Deluxe, a game released in 1994. It was developed using re-
verse engineering, but now has an expressive number of new func-
tionalities that improves the gameplay.

Players in OpenTTD own a transport company and are responsible
for managing it. These players can be humans or computer con-
trolled agents. The primary goal is to become the transport tycoon,
that is, to make the controlled company becomes the best one. The
criteria used to evaluate a company contemplates aspects like: the
total number of vehicles and stations, the number of cargo types
transported, the total number of stations and the amount of money
the company has. A more general criterion can be the company net
worth: the sum of available cash and company’s properties value
minus the total debts.

So, to be better evaluated on these criteria the company owner needs
to build lucrative transport routes. The routes must connect cities
and industries. There are some types of cargo (coal and wood, for
example) that must be transported among industries. Others, like
passengers and mail, must be carried from one city to another. Fi-
nally, some cargo must be transported from one industry to a city
(examples are: goods and food).

Four different transport types can be used and combined to create
routes: aerial, maritime, railroad and road (as shown in figure 1).
Each one has pros and cons that vary according to different factors
such as the amount of cargo that must be carried, the landscape
around the industry/city, the distance between source and desti-
nation, the difficulty to construct the ways and stations, and the
amount of money available.

The aerial transport, for example, requires a large area of flat ground
for the construction of an airport capable of operating with large
airplanes. If compared with the capacity of a train, each airplane
can carry only a small amount of cargo and is also more expensive.
However, there is no need to create paths connecting the airports.
An already existing airport can easily receive new airplanes coming
from anywhere, which is not always true for the other transport
types. Also, as a general rule, airplanes are the fastest vehicles
available in the game.

In contrast with the aerial transport, road transport has the cheapest
vehicles of the game. They are also slower and able to carry only
small amount of cargo. To reach some destination, vehicles must
travel using the available roads. Therefore, the company owner that
wants to use this kind of transport needs to build the roads connect-
ing the route’s source and destination. Road vehicles can automati-
cally share the roads as they are two-way.

On the other hand, railroads are not able to share their tracks au-
tomatically. To create railroads capable of supporting more than
one train running at the same time, the player needs to use a re-
source called signal. There are 6 different types of signals. The two
most important are the block signal (allows only one train to be in
the same block at the same time) and the path signal (allows more
than one train to enter in a block if their paths do not intercept each
other). These resources must be carefully used because misplaced
signals and the use of a wrong signal type can cause deadlocks and
accidents. That is why railroads are the most flexible transport type.

A carefully planned railroad can operate with dozens of trains and
transport a large amount of cargo connecting distant points. The
train cost is not too high if compared to other transport types be-
cause a single locomotive can drag several inexpensive wagons.

As in aerial transport, the construction of railroad stations demands
a large area of flat land. It has also similarities with road transport:
both must connect endpoints and offer tunnels and bridges as way to
transpose obstacles. Thus, the construction of railroads incorporate
almost all the challenges present in the construction of other trans-
port types routes. That is why it has the most complex construction
process.

Figure 2: An OpenTTD screenshot: there two rectangles highlight-
ing some tools available on game menu. The yellow tools predomi-
nantly have construction functions. By contrast, the green tools are
essentially used for management tasks. It also shows the railway
construction tools (the window positioned near the middle). The
basic parts provided by the game for railroad track construction
have been highlighted using the cyan color.

2.1 Gameplay

OpenTTD is a construction and management simulator of transport
routes. Thus, it has tools used to build the routes and other tools
that enable the player to manage the created routes. Figure 2 shows
an OpenTTD screenshot. The game menu is depicted at the top of
the figure. Some tools have been highlighted. The yellow tools are
used in route construction while the green tools are used mainly for
management.

The main point of OpenTTD gameplay is that the player must
build all elements related to the route. So, suppose that one player
chooses to create a route using trains. The first step will be the
selection of the industries and/or cites that will be connected by
the route. There are some important criteria: production rate and
distance between source and destination. After that, he needs to
construct the stations and the tracks. Finally, he will buy the proper
locomotive and wagons, and program them to execute the route.
Other transport types have similar steps but the most powerful and
complex is the railroad type.

Management tools are applied to manage the created routes
throughout the game. During the game, new vehicle models will
be released. All vehicles have some attributes: running cost, max-
imum reliability (determines the chances of a failure), maximum
speed and capacity. Generally, new vehicles are better, since they
are faster and are able to carry much more cargo. Therefore, ve-
hicles need to be replaced during the game because they will be-
come outdated. For railroads, it is also possible to change the type
of the rail. There are four types available in the game: common,
electrified, monorail and maglev. As these new rail types become
available, it will be possible to use new kinds of vehicles. Thus,
sometimes, changing the railway rail type can be lucrative.

The industry production rates tend to increase during the game. If
this industry is used in a route, the number of vehicles must be
revised to better transport the production. The production rate can
also decrease, requiring a reduction in number of vehicles. It is
also possible that another transport company decides to carry cargo
from an already explored industry. The production will now be
split between the companies forcing the old company to adjust the
number of vehicles in its route.

To create the routes, it is important to understand the transported
cargo payment mechanism. The payment received for delivering an
amount of cargo to some industry depends on some factors. They
are: the distance between source and destination, the type of cargo,
the number of days that the cargo traveled and the amount of cargo

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

186

 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

tra
in

ann
ual

 in
com

e (
po

un
ds)

distance between stations (tiles)

Figure 3: This curve shows how the annual train income varies ac-
cording to the distance not considering the inflation and supposing
the train travels at constant speed. The used train has maximum
speed of 112 km/h and the transported cargo was gold.

delivered. So, the final payment equation is:

payment = dist × time factor × num pieces × cargo base

Where dist is the distance between stations, num pieces is related
with the amount of cargo delivered and cargo base is the base price
of a cargo unit. T ime factor represents the delay for transporting
the cargo. It is inversely proportional to the number of days the
cargo traveled. The rate of variation depends on cargo type.

Observing the equation, a trade off can be perceived: long distances
will contribute for a bigger delivery payment. However, the delay
will increase penalizing the time factor. Thus, there must be an
optimal distance.

It is possible to estimate the annual train income for a specific cargo
and distance. First, supposing the train travels at constant speed it
is possible to estimate the travel time. The train has also a load
and an unload time. With this information, one can compute the
number of times the train travels the route in one year. Using this
approximation we have computed the curve in the Figure 3 that
shows approximately what the optimal distance is.

Observing the curve, it is possible to see that the optimal distance is
close to 450 tiles (a tile is a cell in the discrete game map). A good
AI should be able to build routes connecting industries separated by
distances of this magnitude or even bigger distances, considering
that trains will become faster during the game.

3 AI for OpenTTD

This section presents several aspects related to the development of
an AI for OpenTTD. It first classifies the game environment using
[Russell and Norvig 2003] taxonomy. This classification is impor-
tant to better understand the challenges involved in programming
OpenTTD agents. Then, NoAI - the OpenTTD API that enables
the development of AI algorithms - is described. Finally, the al-
ready existent AIs are discussed.

3.1 Game Environment

Considering a company owner as an agent we can classify the en-
vironment where this agent will act. Using [Russell and Norvig
2003] taxonomy, it can be classified as fully observable, strategic,
sequential, dynamic, discrete and competitive multiagent.

The game environment is fully observable because an agent using
its sensors has access to the complete state of the environment at
each point in time. It is capable of seeing all vehicles in the game
(including other companies’ vehicles), all routes and all existing
industries. Moreover, an agent can see the plans being executed by

other companies’ vehicles. However, some of these characteristics
are not implemented in NoAI API yet.

Considering only players’ actions the environment is strategic, i.e.,
the next game state is completely determined by the agent actions
and the other players’ actions (that can not be predicted). Although,
the environment has also some stochastic characteristics mainly re-
lated with the economy. New industries can arise randomly. Their
production rates changes are also determined randomly. The econ-
omy phase, contraction for example, is not predictable. The game
disasters (UFO landing, for example), commonly disabled, are an
environment stochastic element as well.

The OpenTTD game environment is sequential since current ac-
tions will affect future ones. For example, the construction of a rail-
road route influences future managing decisions regarding industry
selection. It also generates new management tasks like: controlling
the number of vehicles in the route and choosing the moment to
change route vehicles models.

While a player is acting or deciding what he has to do, the game
environment is changing: other players can act at the same time,
changes such as the construction of a new industry can happen, etc.
If a player is constructing a railroad to connect a specific industry,
others can do the same and occasionally finish first. The environ-
ment, therefore, can be classified as dynamic. This dynamism will
always generate some uncertainty in the planning and in its execu-
tion.

The game map is divided into small cells called tiles. These tiles are
the smallest map units, i.e., the construction of an element always
demands at least one map tile. The time is also discrete. Internally
it is represented using fractions of days (ticks).

As mentioned, there are various companies competing against each
other. Hence, the environment is competitive multiagent. A com-
pany can collaborate with another by sending to it some money, but
they still compete against each other for resources: industries, cities
and map tiles.

Some of the environment characteristics increase the challenges in-
volving the construction of an AI for the OpenTTD. The dynamic
environment together with the presence of other agents demand
from the AI the ability of fast planning. If planning takes too long,
when it finishes, the current game state can be very different from
the state initially considered in the planning. Thereby, it will not be
valid anymore. Small differences can be resolved using a replan-
ning that, again, needs to be fast.

The route planner needs to be fast while considering a lot of details
available in the game such as the construction of bridges and tun-
nels; the use of terraforming (a tool that enables company owners to
modify the land form); the route configuration (winding routes re-
duce the maximum allowed speed) and the large number of possible
paths to connect two points.

Besides, the presence of other agents also demands some flexibility
from the algorithms responsible for managing the routes. For ex-
ample, consider that one company transports some cargo from one
industry to a city. If another company decides to transport cargo
from this same industry, the number of vehicles in the route should
be decreased. Furthermore, variations on industry production rates
are not deterministic. A route manager, thus, needs to be able to
increase or decrease the number of vehicles in a route according to
the changes in the production rates.

These are the main challenges that must be surpassed by the AI that
will control a company in OpenTTD.

3.2 NoAI API

An agent has mechanism to perceive the environment (called sen-
sors) and some tools that enable it to change this environment
(called actuators). On OpenTTD, sensors and actuators are imple-
mented as an API called NoAI Framework.

The NoAI API allows users to create AIs for the game, program-
ming them in a script language called Squirrel [Demichelis 2009].

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

187

This is one of the many improvements introduced by OpenTTD
community. Squirrel is an imperative object oriented script lan-
guage strongly based on Lua language [Ierusalimschy et al. 1996].
This section will discuss some important characteristics of this API
and how it works.

The primary principle used in the construction of NoAI Framework
is fairness. That is, the actuators must correspond to the tools avail-
able for human players and the sensors must generate environment
perceptions similar to human players’. As a consequence of this
principle, the resources available in both interfaces (for the human
players and for the computer controlled players) are equivalent.

To better understand the API internal functioning, one can con-
sider each AI running in the game as a process in an operating sys-
tem. Each AI will be scheduled using a round-robin scheduler and
will be preempted after executing a certain number of instructions.
Then, the game will execute its proper functions and call the AIs
again, restarting the loop.

The API is composed by various classes that aggregate game func-
tionalities related with some game resource. The class named
AIController must be extend, so when the AI company is launched
in the game, OpenTTD will call the method Start. This method
must never return, if so the AI process will die.

The classes AIAirport, AIRail, AIRoad and AIMarine aggregate the
basic functionality related with the four kinds of transport available
in the game. For example, the AIRail class has a function named
BuildRailTrack(TileIndex tile , RailTrack rail track) used to con-
struct a rail on a given tile. Another important function, used to
create railroad station, is BuildRailStation.

To perceive the game environment one important class is the AITile.
It has functions like IsWaterTile, GetHeight and GetSlope that can
be used to get information about the map. It is important to observe
here that when one of these functions is called, it will return a value
based on the state of the map when it was executed. Therefore,
if the game state changes after this, the AI will need to evoke the
function again to note the difference.

The NoAI Framework also works with some events that are equiv-
alent to the news published for human players during the game.
When a new company is launched, when a new train becomes avail-
able or when a new industry is created the AI event stack will re-
ceive the proper information. These events are very important and
can be used to help AI decisions process.

All the actuators implemented on the API inform if the correspond-
ing action could be executed successfully. Thus, the AI program-
mer can always know when some action fails. One can execute
an action in the test mode to check if it can be currently executed.
Again, the returned value is associated with a specific game state.

3.3 Existing AIs

Currently, there are about 13 published AIs [OpenTTDForum 2009]
available for OpenTTD. Most of them are very simple and just cre-
ate straightforward routes using the aerial and/or the road transport
type. Others, more sophisticated, are able to plan complex routes
and even combine some transport types. However, only four of
them work with trains, the most complex game transport type.

Generally speaking, all these four AIs have some problems. One
of these problems, related with the pathfinding, is the limitation in
the size of the planned routes. As shown, long routes can be very
lucrative especially for trains. Some AIs can not deal with failures
during the construction of a route. That is, if the game state changes
during the planning the AI will fail in the construction of the route.

Other problem is the absence of rail type changes. This change is
very important because it enables the use of new locomotives that
are faster and more trustworthy. Differently from human players,
none of these AIs is able to create double railways (some AIs create
two independent railroad tracks that together compose the route).
They neither are capable of making good decisions. Generally, they
use poor algorithms to choose the locomotive engines and indus-
tries that must be connect by a route. In our tests, trAIns AI won

Figure 4: The figure shows a route created by Admiral AI that op-
erates with trains. To compose the two-way railway it uses two
independent one-way railroad tracks.

easily from some of these AIs because they are very naive and lack
powerful management resources. On some tests, they bankrupted
on the first years of the game.

Among the existent AIs capable of playing with trains, the only one
that could generate results similar to trAIns was Admiral AI (Ad-
miral AI is able to play with all kinds of transport available in the
game except the maritime transport type). It is the most powerful AI
available for the game so far. It operates with trains creating routes
which distance between source and destination is about 75 tiles.
It is able to reuse already built stations, i.e., Admiral AI can con-
nect different source industries to the same destination industry. To
be able to construct a two-way railway, it creates two independent
railroads tracks that together compose the route (figure 4). Each
independent railway is one-way. Thus, Admiral AI railway routes
can operate with multiple trains.

Admiral AI is also able to manage the created routes. During the
game it adjusts the number of vehicles in a route according to the
production of the industry that is connected by the route. Through-
out the game, Admiral AI replaces the locomotive types consider-
ing the new introduced types. Thus, we used Admiral AI to play
against trAIns AI in the experiments presented in Section 5.

4 trAIns AI

Using the NoAI Framework and the Squirrel language we have de-
veloped a new AI for OpenTTD: trAIns. It is named trAIns because
it only plays with trains, i.e., it basically creates and manages train
routes that connect industries. It works as follows: if there is some
money available, it will decide if it should build a new route or
spend the money improving already existent ones.

Route improvement has higher priority and includes increasing the
number of trains in a route, changing the locomotive type or chang-
ing the rail type. If no route needs to be updated, trAIns will create
a new route between two industries. Firstly, the source industry
and destination industries are selected. If possible it tries to use
an already existent destination industry. This is done sharing the
same railway to multiple routes using a mechanism called junction.
Then, the railways to connect the industries are created. To do this,
it executes A* algorithm to find a path between the stations. We use
an abstraction called double parts that enables the construction of
double railways.

This section will describe in details each part of this process.

4.1 Railway Construction

One important component of trAIns AI is the module responsible
for the construction of railways. trAIns builds only double railroad

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

188

Figure 5: This figure shows 6 double parts used to construct double
railways. Each double part is created by the union of the basic
parts provided by the game (figure 2). There are three basic kinds
of double parts: bends, diagonals and lines. They have a direction
and a orientation as shown in the figure. It also shows the base and
next points. The base point is placed over the next point of a part to
connect them.

tracks, which enables many trains to circulate on the same route.
As a result of the restriction that on each track of the railroad the
train can travel only in one direction, the traffic on double railways
is two-way. This approach minimizes traffic jams while allowing a
large number of trains on the same railroad. To guarantee that trains
will only be able to travel in one direction, each track is signaled us-
ing one-way block signals. Next, the process of constructing these
railways will be detailed.

4.1.1 Double Railway Parts

OpenTTD provides four basic parts (figure 2) for the construction of
railways. We have combined these basic parts to create an abstrac-
tion called double railway parts (figure 5). From now on, the term
part will refer to a double part created by the combination of the
basic parts provided by the game, unless the opposite is mentioned.
These parts can be connected to create a double railway. There are
22 parts (bridges and tunnels are also considered parts) that have
an orientation and a direction. The connection between parts has a
restriction: some parts can not connect with others (i.e., each part
has a set of successors). Each part has two important points called
base and next. The base point of a child part (successor part) must
be placed over the next point of the parent part (predecessor part)
to connect the parts.

4.1.2 Railway Planning

As mentioned, trAIns uses A* algorithm [Hart et al. 1968] to plan
a path between source and destination points. A* is a classical path
planning algorithm that is widely used in games to find shortest
paths in a graph or grid. Basically, at each step, A* expands the
node x that has the smaller cost f(x) according to the equation
f(x) = g(x)+h(x), where g(x) is the actual cost of moving from
the source node to x and h(x) is an heuristic function that estimates
the cost between x and the destination node. If this heuristic is
admissible, i.e., if it never overestimates the actual cost, A* can be
proved optimal. Details of A* can be found in [Russell and Norvig
2003] and [Bourg and Seemann 2004] among others.

To be able of performing an efficient planning of long railways,
the original A* implementation provided as library in OpenTTD
was modified. To save time and resources, we removed from the
algorithm the code that updates the cost (g) of the nodes in the open
list. That is, we assume that when a node is inserted in the open list
it has already the minimum cost, i.e., repeated nodes are visited in
an increasing order of cost. Although we have not formally proved
it, we believe that A* optimality is preserved, since, in our case, all
edges have the same cost. So the first edges to be inserted will have

the smallest values of g.

This modified implementation of A* tries to check, as early as pos-
sible, if a node has already been visited, that is, if it is already in the
closed list. The original implementation postpones this verification,
first generating the node and then checking if it is on the closed list.
Moreover, as a consequence of the first change in the code, nodes
are closed (marked as visited) in the moment they are inserted in
the open list.

To create the double railways it considers double parts instead of the
basic parts provided by the game during path computation (a node
is considered a pair < tile , part >). Hence, with this approach,
trAIns needs to execute the search algorithm only one time to build
a double railway while other AIs need two executions, each one
creating an independent single railway in which trains move just in
one direction.

As mentioned, one of the goals of this project is to develop an AI
capable of building railways similar to the ones constructed by hu-
man players. Part of this goal is achieved by the use of double
railroad tracks. However, the railway shape is also an important as-
pect that can determine the similarities of a human player’s railway
and a railway created by an AI. The railway tracing is important be-
cause it influences the acceleration of locomotives. Depending on
the path configuration (number of curves), the train will be forced to
decrease its speed. So, is important to try to minimize the number
of curves. One possible approach to solve this problem is to pun-
ish each direction change using A* function cost (g) as suggested
in [Rabin 2000]. But this can increase the time of execution since
it augments the number of expanded nodes. The solution proposed
here tries to avoid direction changes during tie-break procedures, as
explained below.

To allow A* to efficiently plan long railways, it is necessary to care-
fully choose the heuristics since the number of expanded nodes in
A* can be exponential in the length of the solution. The use of ap-
propriate heuristics can attenuate this problem. The h function used
by our algorithm is the diagonal distance. The traditional Manhat-
tan Distance Heuristic, generally used in grid environments, is not
admissible in our context since using double parts, we may have
rails oriented diagonally. When some nodes have the same f value,
we have to employ some tie-break procedures to chose which one
will be expanded. In case of ties, our algorithm firstly chooses the
node x that has the smallest h(x), that is, the node that is sup-
posedly closest to the goal. If all nodes have the same h(x), the
node that will minimize direction changes is selected. With this
approach, the number of expanded nodes is reduced without sacri-
ficing the solution quality.

Differently from common implementations, our A* implementation
does not keep a field to indicate the parent node. Thus, when the
execution finishes, if a path is found, the algorithm starts from the
goal and chooses the successors with the lowest cost until it reaches
the start node. If successors have the same cost it selects the suc-
cessor that will not cause a direction change. When the start is
found, there’s a path where is possible (there is no guarantee since
the game environment is dynamic) to construct a railway.

If during the railway construction - during the part construction at
the position calculate by A* - a change is detected, i.e., it is not pos-
sible to create a part at that point, it is necessary to replan the path.
The last built parts are destroyed and A* is executed again chang-
ing only the start point, since the construction is done in direction
to the goal.

The structure generated to represent the path is stored to be used in
the future. It is important for changing the rail type and computing
junction points.

4.1.3 Bridges

Sometimes, it is necessary to transpose an obstacle (a river, a road,
another railway) during the construction of a railway. This can be
done using bridges. In general, it is better to avoid bridges by bor-
dering obstacles when possible, since bridges are more expensive
(monetarily speaking). But this may significantly increase the num-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

189

Figure 6: The double railways were constructed by the trAIns AI.
The bridge part was used to transpose other railway. As shown,
the bridges that form a bridge part do not need to be aligned. The
picture also shows a tunnel that can transpose obstacles too. trAIns
AI does not work with tunnels.

ber of expanded nodes. To avoid this growth, our algorithm always
considers bridge construction during path planning instead of trying
to avoid the obstacles.

As the railway created by trAIns AI are double, bridges need to be
double too. Another important restriction is related with the exe-
cution time. During the planning of a railway it is not possible to
check for every node if a bridge should be build. Therefore, the ap-
proach adopted here limits the number of bridge construction tries.
It only tries to create a bridge if it detects that there is an obstacle
avoiding the construction of the next part. If so, it will try to find an
ending point for the bridge that transpose the obstacle and permits
the construction of a part after the bridge.

Bridges are modeled as parts. One bridge part can be composed of
multiple bridges. Each track in the double part has independent size
bridges, that is, the bridges do not need to be aligned in a part nei-
ther start and end on neighbor tiles. There is also the possibility of
mixing bridges with common rails as shows figure 6. Besides sav-
ing processing time, this technique produces good results because
the bridges built are very similar to the bridges created by human
players.

4.1.4 Junctions

Junctions are important tools that allow the creation of complex
railway networks, since they permit the creation of branches. Let’s
say, for example, that there is a route connecting two industries.
Near the source industry there is another industry that produces the
same type of cargo (that is, its production can be transported to
the destination industry already connected by the route). Without
the use of junctions, it would be necessary to create a new railway
connecting the new industry to the destination industry. However,
it is possible to use the already existing railway by connecting the
new industry to it. This connection will be made using a junction
as shown in figure 7.

The adoption of junctions on railways permits the concentration of
production. The production of multiple source industries can be
carried to a single industry. Some industries can only produce car-
gos by processing other industries production (a Sawmill, for ex-
ample, uses wood to produce goods). If the production of various
industries can be routed to a single processing industry its produc-
tion rate will be very high. Thus, this industry will be an excellent
candidate for a route.

Junctions are also modeled as double parts. There are 12 differ-
ent junctions and each one can be placed over some specific parts.
Thus, to create a branch at specific point of the route, one must
choose the proper junction part that fits on the part at that point.

Figure 7: This figure shows a junction used to create a branch on
a railway connecting a Coal Mine to a Power Station. After the
construction of the junction, there are two Coal Mines connected to
one Power Station. It also shows that two trains can pass through
the junction at the same time if their paths are independent, i.e.,
they do not cross.

At the junctions, the tracks of the railway cross with each other. So,
signals must be placed to avoid accidents. The signals used here
are from the path signal type, which allows more than one train to
enter in a block if their paths do not intercept themselves. Hence, it
permits that two trains use the junction at the same time, in the best
case. This approach attenuates traffic jams caused by the necessity
of mutual exclusion on junctions.

4.2 Railroad Station Construction

Cargos are loaded and unloaded at stations, which should also be
constructed by the company owner. These stations should be com-
patible with the double railways adopted. We selected a format in
which there is a single entry point and a single exit point in each
station. Each point connects with one of the tracks that compose
the double railway. A station can operate with multiples trains at
the same time as the number of platforms can be configured. We
use two platforms for unloading station and one for the loading sta-
tion. The number of unloading platforms is bigger to avoid traffic
jams since multiple source industries can share the same destination
industry.

To create a station, it is necessary to find a large area of flat land
close to the desired industry (so far, trAIns only creates routes con-
necting industries). Unfortunately, there is rarely an available area
satisfying these constraints so it is necessary to use the terraform-
ing tool to flat the land. Since the cost of this operation can be very
high, the approach adopted here is to test a number of different pos-
sible lands to then choose the least expensive. The number of tests
is not high since there is a distance restriction between the station
and the industry (if this distance is too large the station will not be
associated with the industry).

4.3 Management

There are two primarily management tasks that should be treated
by the AI: route management and the investment of the company’s
available money. The first task has higher priority: the AI will only
invest the money in new routes if none of the current existing routes
needs it. In this case, the last task is treated using a very simple
approach: always invest (although some restrictions are adopted
to avoid spending money on industries with very low production
rates). Another important restriction is that trAIns AI must have
a minimum amount of money before starting to construct any new
route.

The process of creating a new route demands some decisions. One
of them is the choice of which pair of industries will be connected

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

190

by the route. To solve this problem, trAIns AI considers some in-
dustry characteristics such as the number of stations around the in-
dustry, the cargo type and the amount of cargo already transported.
Thus, the algorithm computes a ratio for each industry in the game
and then chooses the industry with the highest ratio. This ratio is
given by the production that is not already transport divided by the
number of stations around the industry (at least one) and by the
price paid for one unit of that cargo transported across 20 tiles with
just 10 days of delay. That is, the trAIns AI tries to select the indus-
try with the largest potential of money generation.

After choosing the source industry, it is necessary to find an in-
dustry to where the production must be transported. The optimal
distance between two industries follows a curve similar to the one
shown in figure 3, but can not be too long as time to plan the rail-
way will increase too much. Firstly, it tries to use an industry that
already has a route and railways. The condition to do this is that the
distance between industries and the distance between the source
industry and the closest part of the railway that forms the already
existent route are limited for a given range. If so, a junction will be
created. Otherwise, a new railway will be constructed.

Finally, the number of trains and the locomotive type must be cho-
sen. As the number of trains in the route depends on the locomotive
type, it is selected first. The selection process is also based on the
computation of a ratio. For locomotives, this ratio varies from 0 to
1 and considers aspects such as the price, the maximum reliability,
the maximum speed, its weight and power. All these variables are
normalized according to the largest value available. Basically, the
trAIns AI computes the financial cost of the locomotive benefits.
All benefits have the same importance.

The created routes must be managed during the game. One of the
managing tasks is the decision of the number of trains in a route.
The process used to solve this problem estimates the load time and
the travel time using the distance between stations, the production
rate and the locomotive maximum speed. Thus, the number of
trains is given by the load time plus the total travel time divided
by the load time. This formula tries to guarantee that there will
always be a train waiting to be load.

Another important management problem is the decision of when
the locomotive type must be changed. This problem is also related
with the rail type change. To solve these problems, trAIns calculates
the same ratio used to decide with locomotive is the best. If the
current locomotive is not the best it will be replaced. If the new
locomotive can not operate on the current rails it must be changed
as well. To avoid constant locomotive changes the AI only replaces
locomotives in intervals of five years.

5 Experiments and Results

We performed some experiments to evaluate the proposed AI.
These experiments compared trAIns AI with the Admiral AI play-
ing with only trains. Fourteen scenarios have been used: half with
flat terrain and the other half with mountainous terrains. All maps
have 512x512 tiles, very small amount of seas (they are predom-
enantly are formed by lands) and the landscape style used was the
temperate (the game has 4 different landscape styles). Games begin
at the first day of 1960 and go for about 15 years. The locomo-
tive failures were disabled and the other attributes were configured
using the medium difficulty level. The games were executed in
OpenTTD version 16724, available at the game SVN server.

Tables 1 and 2 present a summary of the results. Two metrics
were used to compare the performance of the AIs: the company
value and the detailed performance rating. The last considers dif-
ferent aspects such as the total number of vehicles, the total num-
ber of stations, the minimum and maximum incomes, the minimum
profit, the number of cargo types transported and the total amount
of money. The evaluation is based on some thresholds that must be
reached by the company. Thus, if the company reaches all thresh-
olds it will be evaluated with the maximum value: 1000 (figure 10
shows more details about this evaluation process).

The tables also present the number of routes created (a route is con-
sidered a pair of connected industries). They also exhibit the route

Figure 8: All highlighted industries have their production trans-
ported to the same destination industry. That is, they share the
destination station and part of the railway.

Figure 9: The figure shows an overview of the routes presented
in figure 8. The source industries have been circulated and the
destination industry is pointed by an arrow. It is also possible to see
that the created railways have a small number of direction changes.

average size that is computed using the Manhattan distance between
the stations. Other selected fields are the total number of trains and
the total number of stations.

Considering the company value as metric, trAIns AI defeated Ad-
miral AI in all scenarios. On average, it reached a company value
about eight times bigger than Admiral AI company value.

One of the causes for this success is the size of constructed routes.
The routes created by our AI are longer than Admiral’s as shown in
the last column. They are also more lucrative. Table 3 shows the ra-
tios: company value per trains and per routes. The trAIns AI routes
are about 3 times more lucrative than Admiral AI routes. This re-
iterates the results shown in figure 3. Moreover, long railways de-
mand a large number of trains per route because of the increase in
travel time. That is, if the distance between stations increase, to
keep the monthly transported cargo rate, it is necessary to operate
with more trains on the route. On average, trAIns AI had about 2.66
trains per route against about 2 trains used by Admiral AI (table 3).

The use of junctions allowed the sharing of a large number of sta-
tions among routes. trAIns AI uses on average 1.44 stations per
route against 1.86 used by Admiral AI. It also provided a mecha-
nism to create railroad networks as shown in figures 8 and 9. During
the experiments we observed that, in some situations, five different
source industries shared the same destination industry.

When the terrain type is mountainous, it is more difficult to plan
railways. On hilly terrains, the number of restrictions for path plan-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

191

Figure 10: This figure shows the companies detailed performance rating in match number 6 with flat terrain type. As mentioned, it is
computed based on different criteria. It also shows the companies finances.

AI Performance rating Company value (pounds) # trains # routes # stations Route average size (tiles)

Match 1, finished date: 8 - Jun - 1975.

Admiral 841 6,090,193 121 67 110 63.79
trAIns 837 46,124,685 221 81 112 193.04

Match 2, finished date: 1 - Feb - 1975.

Admiral 780 4,634,504 98 52 90 59.46
trAIns 786 18,437,790 103 43 65 192.74

Match 3, finished date: 11 - Jan - 1975 .

Admiral 775 8,272,364 175 84 129 67.01
trAIns 831 43,477,220 202 83 114 195.19

Match 4, finished date: 4 - Jan - 1975.

Admiral 598 3,729,935 79 44 79 65.43
trAIns 812 41,622,238 174 67 96 188.28

Match 5, finished date: 21 - Jan - 1975.

Admiral 595 4,073,063 92 51 91 62
trAIns 831 35,198,641 153 61 94 185.34

Match 6, finished date: 1 - Nov - 1975.

Admiral 716 4,955,126 97 49 93 61.25
trAIns 831 39,619,536 207 77 104 192.20

Match 7, finished date: 2 - Jan - 1975.

Admiral 801 6,591,956 120 62 107 66.50
trAIns 791 19,586,151 143 43 68 195.20

Table 1: Admiral AI versus trAIns AI: played in scenarios with flat terrain type.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

192

AI Performance rating Company value (pounds) # trains # routes # stations Route median size (tiles)

Match 1, finished date: 1 - Jan - 1975.

Admiral 703 4,581,543 103 47 88 67.74
trAIns 796 23,004,009 123 50 72 179.74

Match 2, finished date: 23 - Set - 1975.

Admiral 133 29,700 9 4 10 69
trAIns 823 22,927,440 137 53 74 195.32

Match 3, finished date: 26 - Jan - 1975.

Admiral 716 5,408,988 120 65 110 62.35
trAIns 831 21,110,332 200 73 102 190.79

Match 4, finished date: 5 - Aug - 1975.

Admiral 439 2,280,652 48 23 46 62.82
trAIns 831 40,170,005 192 70 98 194.10

Match 5, finished date: 7 - May - 1975.

Admiral 285 3,030,691 24 14 28 72.28
trAIns 837 34,544,942 180 64 91 207.57

Match 6, finished date: 26 - Jul - 1975.

Admiral 332 1,283,846 29 15 27 60
trAIns 831 33,816,215 173 63 91 198.28

Match 7, finished date: 5 - Jan - 1975.

Admiral 468 1,462,148 34 16 34 61
trAIns 816 17,162,685 121 49 73 201.28

Table 2: Admiral AI versus trAIns AI: played in scenarios with mountainous terrain type.

AI #stations

#routes

#trains

#routes

company value

#routes

company value

#trains
Company Value (pounds) Relative company value

Scenarios with flat terrain type.

Admiral 1.73 1.9 92,941 48,914 5,478,163 1
trAIns 1.45 2.67 527,191 200,083 34,866,609 6.36

Scenarios with mountainous terrain type.

Admiral 2 2.02 97,247 50,560 2,582,510 1
trAIns 1.43 2.65 399,024 149,679 24,585,847 9.52

All scenarios.

Admiral 1.86 1.96 95,094 49,737 4,030,336 1
trAIns 1.44 2.66 463,107 174,881 29,726,228 7.94

Table 3: This table summarizes some statistics related with the matches presented in tables 1 and 2. The ratios that used the company value
are in pounds.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

193

ning increases. The terrain landscape also causes a decrease in av-
erage locomotive acceleration. So, the total company value tends
to reduce. As table 3 shows that Admiral AI was more affected by
land format.

If the criterion used to compare the AIs is the performance rating,
trAIns AI still defeats Admiral AI. The aspects evaluated by this
criterion cover various game details. It is based on some thresholds
and if the company reached the minimum values it will be ranked
using the high value: 1000.

The railways created by trAIns AI do not have too many direc-
tion changes, in spite of the absence of punishment for direction
changes. This is a very important result because enables the cre-
ation of large railways without degenerating their quality. Figure 9
shows a railway created by trAIns AI.

6 Conclusion

Artificial intelligence is one of the main components of a game and
largely influences its quality. In OpenTTD, artificial intelligence
algorithms are mainly responsible for controlling game agents,
specifically, the companies controlled by the computer. These al-
gorithms must generate actions and decisions so that agents behave
similarly to the human players.

In this work, we presented trAIns, an AI for OpenTTD. The main
motivation for its creation was the lack of good AIs capable of play-
ing using trains. The existent AIs have some common problems:
they can not deal with complex railroads, are not able to plan large
railroads, can not change railroad track type, use poor algorithms to
choose the locomotive engines and also construct very differently
from human players. These problems affect the performance of the
company controlled by the computer and also degrade game’s qual-
ity.

trAIns AI presented some approaches to better deal with these prob-
lems. A careful implementation of A* search algorithm increased
the performance without lowering solution quality. Despite the use
of simple function costs, the generated railways do not have too
many direction changes and are similar to human players’ railways.
Double railways enabled the use of various trains on the same route
and with the adoption of the junctions the sharing of stations were
also possible. Finally, the decision processes implemented in trAIns
were able to satisfactorily manage the transport company during the
entire game.

In the future, we intend to improve the AI decision and planning
processes. We believe they can be refined with the adoption of op-
timization techniques. However, these techniques must be adapted
to generate fast responses. Another way to upgrade these processes
is the adoption of some techniques, like GOAP [Orkin 2004], com-
monly used in digital games.

The pathfinding algorithm can also be improved. There are some
approaches capable of performing a replanning without the neces-
sity of recomputing the whole solution. These approaches, for
example [Koenig et al. 2004; Koenig and Likhachev 2002], can
be adapted and used for programming an OpenTTD AI. Another
possibility is the use of real time algorithms such as [Koenig and
Likhachev 2006] to generate fast solution for the game.

Finally, there are some other game resources that still can be imple-
mented in the AI. The use of tunnels is one of them. Like bridges,
they can transpose some kinds of obstacles and are important in the
game. Another important resource is the adoption of terraforming
to decrease the number of curves and altitude changes.

Acknowledgments

The authors would like to thank the financial support provided by
CNPq and Fapemig in the development of this work.

References

BOURG, D., AND SEEMANN, G. 2004. AI for Game Developers.
O’Reilly Media, Inc., July.

BYL, P. B.-D. 2004. Programming Believable Characters for
Computer Games (Game Development Series). Charles River
Media, Inc., Rockland, MA, USA.

DEMICHELIS, A., 2009. Squirrel. http://squirrel-
lang.org/default.aspx, June.

HART, P. E., NILSSON, N. J., AND RAPHAEL, B. 1968. A for-
mal basis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on 4, 2,
100–107.

IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., HENRIQUE, L.,
WALDEMAR, F., AND FILHO, W. C., 1996. Lua - an extensible
extension language.

KOENIG, S., AND LIKHACHEV, M. 2002. D*lite. In Eighteenth
national conference on Artificial intelligence, American Associ-
ation for Artificial Intelligence, Menlo Park, CA, USA, 476–483.

KOENIG, S., AND LIKHACHEV, M. 2006. Real-time adaptive a*.
In AAMAS ’06: Proceedings of the fifth international joint con-
ference on Autonomous agents and multiagent systems, ACM,
New York, NY, USA, 281–288.

KOENIG, S., LIKHACHEV, M., AND FURCY, D. 2004. Lifelong
planning a*. Artif. Intell. 155, 1-2, 93–146.

OPENTTD, 2009. Openttd. http://www.openttd.org/en/, June.

OPENTTDFORUM, 2009. Transport tycoon forums - noai discus-
sion. http://www.tt-forums.net/viewforum.php?f=65, June.

ORKIN, J. 2004. Applying goal-oriented action planning to games.
Game Programming Gems, 217–228.

RABIN, S. 2000. A* aesthetic optimizations. Game Programming
Gems, 264–271.

ROLLINGS, A., AND ADAMS, E. 2003. Andrew Rollings and
Ernest Adams on Game Design. New Riders Publishing, May.

RUSSELL, S. J., AND NORVIG, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

194

