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Abstract

Nowadays motion capture is a valuable technique for virtual char-
acter animation in digital movies and games due to the high degree
of realism that can be achieved. Unfortunately, most of the systems
currently available to perform that task are expensive and propri-
etary. In this work, an open source application for optical motion
capture is developed based on digital image analysis techniques.
The steps of initialization, tracking, reconstruction and output are
all accomplished by the built OpenMoCap software. The defined
architecture is designed for real time motion recording and it is
flexible, allowing the addition of new optimized modules for spe-
cific parts of the capture pipeline, taking advantage of the existing
ones. Experiments with two cameras with infrared LEDs and re-
flexive markers were carried out and the created methodology was
assessed. Although not having the same robustness and precision
of the compared commercial solution, this work can do simple ani-
mations and it serves as an incentive for research in the area.
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1 Introduction

Analysis and motion capture (MoCap) of human movement have
been growing consistently over the last decade. Many researchers
from different areas are now working with it because of the wide
range of possible applications. Following a classification scheme
presented in [Moeslund et al. 2006] it is possible to separate
those applications into three groups based on their main objective:
surveillance, control and analysis.
Surveillance applications focus on examining motion of a person as
a sole object or as a group of objects in case of people agglomera-
tion. Determining the flux of individuals in a mall in order to dis-
cover some pattern to optimize shops locations is one example. An-
other one is a model that describes movement behavior in a prison
for security reasons.
Control applications interpret motion from an actor and transform
it into a sequence of operations. Movies like King Kong (2005) and
Polar Express (2004) use actors movements to operate characters.
Other instances are animated characters from 3D computer games,
like FX Fighter, Fifa and NBA Live series.
Analysis applications generally dedicate on studying a person as
a set of objects. Some examples include improving athletes tech-
niques, studying clinical cases and defining elder people body be-
havior.
Motion capture is a powerful technique for animating virtual char-
acters and controlling them. It creates smooth movements, giving
sensation of real ones. In addition, if used correctly, it can speed up
animation, when compared to traditional methods like key-frame
animation.
Currently, in Brazil, there are just two organizations that have robust
motion capture systems for character animation: Rede Globo and
RPM Produtora Digital. Every piece of hardware and software from

those systems is imported and expensive, costing tens of thousand
of dollars. Usually, game companies in Brazil rent them or buy
imported MoCap data.
To our knowledge there are only two national solutions called
DVIDEOW [Figueroa et al. 2003] and BraTrack [Pinto et al. 2008].
The first one is widely used for gait analysis, but it is post-
processed. In other words, it does not support real time preview-
ing and it can’t be used to control operations. Besides that, its
source code is closed and apparently it’s not actively being devel-
oped anymore (homepage of the project [Figueroa 2009] is down
at the present time). BraTrack, in its turn, can track objects in real
time, but it is not freely available.
In order to acquire expertise and reduce costs, we present the devel-
opment of an open source optical motion capture software for real
time uses in this work. It is a standalone solution, that is, every task
needed to acquire MoCap data is implemented by the built applica-
tion. Further, it is modular and flexible, allowing new modules to
be easily integrated and optimized, taking advantage of the existing
processing chain. Conclusively, it has a simple graphical interface
and it is ready to grow by receiving new contributions.
This paper is organized as follows: related work is introduced in
the next section, including some history and commercial and aca-
demic approaches for optical motion capture. Our methodology is
described in depth in Section 3. The software architecture, cho-
sen programming language and libraries are presented in Section
4. Designed experiments and their results are shown in Section 5.
Finally, some conclusions and future work are drawn in Section 6.

2 Related Work

The first process considered to be MoCap was done in 1872. Ead-
weard Muybridge took several pictures of a horse while galloping
with many cameras to settle a bet. The question he answered with
that experiment was if a horse would take all his feet of the ground
while galloping. Indeed, the horse does take all his feet of the
ground, see Figure 1. After that, many other analog processes ap-
peared [Menache 2000], but they were all 2D.

Figure 1: Muybridge Horse Pictures

Almost a hundred years later, with the advent of computers, digital
3D motion capture began with a commercial called Brilliance in
1985, during Superbowl. In order to produce it, several VAX 11
machines were borrowed across USA for two weeks to render 30
seconds of video. In 1995, warriors characters from the pc game Fx
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Fighter were animated using digital MoCap. Until the present days,
several other processes were developed and technologies created to
record motion, most of them are detailed in [Kitagawa and Windsor
2008].
Now, we briefly describe three commercial systems that represent
the current state-of-the-art in professional optical motion capture.
They all cost more than 50 thousand dollars [Inition 2008] and are
tightly integrated with proprietary hardware and software. The first
one, from Vicon [Vicon Motion Systems 2008], uses passive mark-
ers. It is composed by eight T160 cameras, capable of capturing
movement in real time at 120Hz with 16 megapixels. Further, it
can capture at faster frame rates if camera resolution is reduced.
The second one is called IMPULSE, uses active markers and is
made by [PhaseSpace Inc. 2008]. It has almost the same capa-
bilities of Vicon’s solution, recording motion at 120Hz with 16
megapixels. The last one is a system that doesn’t use markers,
called STAGE, made by [Stage 2009]. It is also capable of cap-
turing data at 120Hz, but its estimated precision is equivalent to a 2
megapixels marker system.
While not as robust and precise as commercial systems presented
earlier, many papers were published regarding optical motion cap-
ture systems. We review and discuss here some of the most recent
and relevant.
[Figueroa et al. 2003] report the construction of a brazilian motion
capture software for gait analysis, athletes enhancement and other
application in the biomedical area. It focuses on tracking markers
using a user configurable chain of algorithms based on mathemati-
cal morphology, pattern recognition and a Kalman filter. The soft-
ware also does 3D reconstruction using calibrated cameras and DLT
(Direct Linear Transform), but authors don’t show experiments for
that. Finally, it is post-processed, video sequences must first be
recorded for each camera present in the system to obtain results.
[Uchinoumi et al. 2004] perform motion capture without using
markers, using just silhouettes of actors iluminated by four cameras,
each connected to a computer in a distributed system. Information
is processed by four computers that send data to a server through a
local network. The server then is responsible for combining every
silhouette processed by each client so that 3D reconstruction can
be carried out. Authors say that is possible to capture an object at
almost 11 frames per second.
[Castro et al. 2006] describe the development of a motion capture
system based on passive markers, focused on gait analysis, called
SOMCAD3D. It is also post-processed as [Figueroa et al. 2003].
DLT is likewise used for camera calibration and 3D reconstruction.
Tracking is done by curve interpolation. In addition, in this work,
system precision and accuracy is compared with some other sys-
tems specially built for gait analysis.
[Raskar et al. 2007] present a high performance motion capture
system with few restrictions regarding the recording environment.
It does not use cameras, but instead photo-sensors acting as ac-
tive markers. They are capable of determining their own posi-
tion and orientation in space through binary patterns emitted by
LEDs placed around the capture volume. Since it has no cameras,
expensive hardware is not required and can record movement at
rates of 480Hz. Although being composed of reduced cost hard-
ware, their system’s assembly and configuration require off-the-
shelf electronic and optic components. Finally, it is not possible
to capture faces due to the size of the markers.
[Pinto et al. 2008] present the first commercial low-cost marker-
based optical tracking system developed in South America. The
system is composed by two off-the-shelf USB cameras with
custom-made electronic boards with infrared LEDs and reflexive
markers. Authors claim that it is possible to capture movement at
60Hz.
Academic systems concentrate on proposing new techniques
whereas commercial ones usually advance some already know, ma-
ture processing chains as industrial secrets. It does not mean that
the reproduction of the papers described here is simple or even pos-
sible, principally because some important implementation details

are omitted and none of them make their source code easily avail-
able.
OpenMoCap is the first step of a bigger project to build a complete
and robust optical motion capture system. The main application of
the developed solution is the generation of realistic data in real time
to animate and control virtual characters. It is the first work that we
have knowledge in Brazil of an open source motion capture system
created to fulfill that purpose.

3 Methodology

Motion capture can be done using cameras and special selected
points. The whole process is complex but can be divided in basi-
cally four steps. The first one, initialization, regularly is done only
in the beginning of the process and relates special given points from
a scene with points from a previous defined structure. The second
task is called tracking, that is, monitor the position of those special
points over a period of time. The third one is reconstruction or pose
estimation. Finally, the last one is output and consists in outputting
data in some special format.
Specifically, when working with 3D models, we must find the cor-
respondence between those special points from each present camera
image in the system and apply a triangulation algorithm to obtain
their respective 3D coordinates. Obtaining those special points is
possible using markers or other local features and heuristics, rel-
ative regions positions and skin texture and color. However, the
simplest way to retrieve those special defined points is by using
markers. Markers are special objects attached to a suit wore by
an actor. Also, it is possible to place them directly over the actors
body.
Markers can be considered active or passive, depending on their na-
ture. A clear distinction between those classes is that active markers
react to external impulses whereas passive markers do not. Further-
more, active markers necessarily have some kind of embedded pro-
cessing and communication through different kind of sensors and
hardware. On the other side, passive markers just have some spe-
cial properties, like reflecting infrared light. Summarizing, passive
markers only help segmenting a region of interest while active ones
provide more information about themselves, like their own centroid
position (special point) and their identity (semantic relation with the
chosen model).

3.1 Initialization

3.1.1 POI Extraction

In order to execute this first step, we must extract some special im-
age points called Points Of Interest (POIs). Each marker in the
scene corresponds to a POI in the image. The extraction of those
points is accomplished by applying a binary thresholding algorithm.
The threshold parameter can be set to values between 0 and 255
(possible intensity values of a pixel in a gray scale image). At first,
this procedure is enough to separate POIs from the background.
However, our goal is to separate uniquely detected POIs and also
eliminate noise (high intensity parts of the image not related to
markers). To perform this, a component connected algorithm with
6-adjacency is applied [Umbaugh 2005]. In practice, the algorithm
suffered some modifications to increase its efficiency and reduce
noise.
Thresholding is executed in parallel with pixel labelling, so that the
image does not have to be looped through twice. As soon as each
image element is analyzed, it is marked as being background or ob-
ject, allowing the connected component algorithm to continue its
traditional process. Than, the calculation of the connected com-
ponents area takes place immediately, enabling the removal of the
ones that are probably not markers. This removal procedure is
based on user defined limits of minimum and maximum areas. Re-
maining objects have their centroid calculated. Figure 2 shows the
process.
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Figure 2: POIs Detection

3.1.2 Semantic Selection

The next step of initialization is to associate semantics to detected
POIs. This is necessary to uniquely define each object with a simple
name, like human body parts. OpenMoCap has a skeleton importer
compatible with structures written in Biovision Hierarchy (BVH)
format [Menache 2000]. An alternative way of semantic input is
a simple text file, containing in each line a name. Finally, seman-
tic attribution is carried out manually, in a simple manner, by the
graphic interface, shown in Figure 3.

Figure 3: POIs Semantic Selection

3.1.3 Camera Parameters Estimation

The last step of initialization is the camera parameters estimation.
Inspired on [de la Fraga and Vite Silva 2008], our approach to cam-
era parameters estimation is based on modeling this task as an opti-
mization problem, solved by differential evolution. The basic idea
is to select some camera parameters as variables and define a cost
function over them, using semantic information and POI localiza-
tion, available from previously described steps. Final result is an
estimated projection matrix for each camera, that minimizes that
cost function.
Currently, OpenMoCap uses only two identical high quality cam-
eras. Therefore, we ignore lens distortions and chromatic aberra-
tions, simplifying the problem. Hence, the chosen parameters of
each camera to be variables of the optimization problem are: fo-
cal length fc, rotation vector Rc = [rxc , r

y

c , r
z

c ] and the translation
vector Tc = [txc , t

y

c , t
z

c ].
Variables have their lower and upper limits defined by the user,
through the camera parameters estimation interface shown in Figure
4. The first set of parameters controls the differential evolution al-
gorithm, the number of individuals, the number of generations, the
differential variation and the recombination constant can be modi-
fied.
The second set of parameters effectively defines the lower and up-
per limits. The Translation Range Unit field defines the maximum
translation unit for each coordinate axis, from the first camera to the
second. The Max Rotation field determines the maximum rotation

Figure 4: Camera Parameters Estimation Interface

in degrees (minimum rotation is always 0). Finally, the Min Fo-
cal Length and Max Focal Length fields specify the minimum and
maximum focal length, respectively, in pixels.
After the definition of the variables and their limits, it is necessary
to define the cost function. This function must measure the quality
of an estimated solution. Specifically, its inputs are an individual to
be evaluated and a set of ordered pairs. Each pair is composed by
two POIs with equal semantic and their own centroid coordinates.
Begining with the variables from the target individual of evalua-
tion, two projections matrices are constructed. They represent the
estimated orientation and position of the two cameras. Through
these matrices and a pair of correspondent POIs, and using triangu-
lation solved by SVD [Hartley and Sturm 1997], we can project a
3D point. Afterwards, this 3D point is reprojected into the image
planes. The sum of euclidean distances between those reprojected
points and the real centroids of the ordered pair, is called reprojec-
tion error.
The total cost of an individual (cost of a possible solution) is ob-
tained by the sum of reprojection errors of all POIs ordered pairs.
The smaller the cost the better is the solution. Therefore, our goal
is to find the matrices that minimize this global reprojection error.
After this initialization phase, the software is in a valid state, with
all data necessary to begin motion capture.

3.2 Tracking

Tracking is the next phase, it is responsible for maintaining POIs’
semantics through time. It tries to be as robust as possible regard-
ing observed movement trajectories. This helps the motion capture
software to continue in its correct initialization state. Lastly, it is
one of the continuous phases of the capture workflow, carried out
in every frame.
Tracking starts as soon as a POI receives a semantic, not only when
the user requests to begin a motion capture recording section. This
is possible because processing is done locally, i.e. only informa-
tion from the last frame of the same camera is used to define the
semantic of extracted POIs in a new frame.
The alpha-beta estimator [Yoo and Kim 2003] is used to appraise
POIs’ next positions. Figure 5 illustrates how tracking is accom-
plished. Images with timestamps represent occurred POIs’ move-
ments in the scene. While the ones without timestamps represent
results obtained by the implemented tracker.
When a new frame is available, the estimated localization of a POI
is matched with one of the new extracted centroids. This matching
refreshes POI’s position with the centroid that has the smaller eu-
clidean distance from the estimated place. Nevertheless, the user
can set a maximum allowed distance between these two points, ex-
hibited in Figure 5 by the dotted circles. If no new detected centroid
is inside that search region, the new POI’s position will be the one
predicted by the estimator.
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Figure 5: Sample Tracking Diagram

3.3 Reconstruction

3D reconstruction is carried out by linear-eigen triangulation [Hart-
ley and Sturm 1997]. This process is responsible for calculating
tridimensional POIs coordinates, through their projections on the
image planes and their respectives camera matrices. Like the previ-
ously phase, this one is continuous, executed frame by frame. But,
on the contrary of tracking, it is not local, it is global. In other
words, information from all images acquired by the cameras at the
same time must be gathered to achieve the desired result.
As described earlier in the section of camera parameters estimation,
our method does not use tridimensional points with known metric
coordinates to estimate camera projection matrices, it is not like
a traditional calibration algorithm. Therefore, the final result ob-
tained by triangulation is defined up to a scale factor. Despite this,
relative distances between points from the captured structure are
maintained. This is often enough to some simple animations and
characters control.

3.4 Output

Transforming acquired data by triangulation into usable informa-
tion is the last necessary phase to complete the motion capture
workflow. Basically it runs only once, but it is continuously re-
freshed after each performed triangulation. In our approach, an
output file is generated only after an user requests to stop a motion
capture recording section.
There are several types of standard MoCap files [Kitagawa and
Windsor 2008]. Fundamentally, they can be classified in two cate-
gories: hierarchical and translational. Hierarchical ones contain a
defined structure with bones, joints and their relations. Their mo-
tion part consists of describing movement as relative rotations, be-
ginning with the skeleton center of mass position.
The other way to represent MoCap data is by describing motion as
global translations, without having to define a skeleton. This format
is much simpler than the hierarchical one. Since our reconstruction
phase produces just point clouds with associated semantic, our soft-
ware exports data in a translational standard called TRC, developed
by [Motion Analysis Corporation 2009]. Figure 6 shows a fragment
of a sample file generated by OpenMoCap.

Figure 6: TRC Sample File

The output file is basically divided in two parts, header and data. In
the first, we have information about the generated file, the amount
of data acquired in a capture recording section per second, the
amount of images obtained per second by the cameras, the total
number of processed frames, the total number of markers and the
used measurement unit. Specifically, this last parameter is set to
millimeter, although it has no meaning, since 3D points are recov-
ered without defined scale. The last information in this first part is
the title of the captured data columns and POIs’ semantics.
The second part of the file is usually composed by many lines of
POIs’ 3D coordinates, organized according to the header previously
described. Each line has the index of the frame which the coordi-
nates were calculated and respective instant of time. Finally, al-
though it is a simple format, it is natively imported (without plugin
or scripts) by the 3ds Max software [Autodesk 2009].

4 OpenMoCap

OpenMoCap was built trying to employ most of the good software
construction practices described in [Kernighan and Pike 1999] and
[McConnell 2004]. Therefore, many architecture and implemen-
tation decisions were made to create a high quality, flexible and
extensible code.
Figure 7 illustrates the defined architecture by a modules diagram.
The separation of modules by threads was done to take advantage
of the tendency of modern processors to have more cores. Further,
tasks executed in real time such as POI detection, tracking, triangu-
lation and visualization could be made parallel.

Figure 7: OpenMoCap Architecture

The main flow of execution is composed by the application core
and the main user interface. MoCap core is responsible for initial-
izing correctly every other flow of execution and their associated
modules. Furthermore, it acts as a central information repository
keeping track of what is the configuration of the connected cam-
eras, which algorithms are available to perform specific parts of the
motion capture workflow and what kind of object will be captured
(available POI semantics).
A screenshot of the main user interface is shown in Figure 8. This
graphical interface is responsible for showing captured data and for
receiving and processing user requests, calling specific functions
from the existing controllers. Basically, there are four components
that interact with users within the software: the menu, the status
bar, camera windows and visualization window.
The menu allows the start and the end of a motion capture recording
section. It also informs total capture time and the algorithms being
used. The status bar shows the resolution and the frame rate of the
cameras being used.
The camera windows display acquired images for each video input
device connected to the computer and allow the semantic selection
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Figure 8: OpenMoCap Screenshot

for the detected POIs. The visualization window displays a pre-
view in real time of the motion that is being recorded through a
dedicated thread. The Multiple Document Interface (MDI) model
was adopted to provide a common and flexible space for all those
windows.
Each camera window is processed exclusively by a thread, coor-
dinated by a video controller module. Each Video Controller has
an instance of a camera, a POI detection algorithm and a tracking
algorithm that are executed sequentially. In Figure 7 this is repre-
sented by the modules Abstract Camera, Abstract POI Detector and
Abstract Tracker. They define a common and generic interface for
the cameras and the 2D processing algorithms cited earlier.
This concept of abstract modules is very important to ensure the
software extensibility, one of the goals of this work. If a new cam-
era is to be used and it is not compatible with the current implemen-
tation, just some specific methods need to be implemented (like ob-
taining frames and changing resolution) following the pattern of the
abstract camera module to take advantage of the existing processing
chain. Another beneficial example is the possibility to substitute the
POI detection algorithm with one based on body parts recognition
instead of regions intensity. In other words, transform the system
into one without markers.
The remaining flow of execution in Figure 7 that has not been de-
scribed yet is the one composed by the capture controller module.
It is the leading contributor for the correct software operation. Ef-
fectively, it executes a motion capture recording section, managing
and processing data produced by the video controllers, feeding and
updating the visualization module. Based on the same principle of
abstract modules, the capture controller has an instance of a camera
parameters estimation algorithm (Abstract Calibrator), an instance
of a reconstruction algorithm (Abstract Reconstructor) and an in-
stance of an output algorithm (Abstract Output Writer).
Until now we have discussed higher level architecture decisions,
related chiefly with the concepts of abstraction, generalization, sep-
aration of interests and incremental development. In addition to it,
some lower level decisions were also made to guarantee profit from
existing tools and to obtain high performance.
Given the nature of the built application, an efficient and mature
computer vision library was specially usefull for its construction,
OpenCV. [Intel Corporation 2009] made it to demonstrate its pro-
cessors performance. It is written in C++ and it’s maintained nowa-
days by [Willow Garage 2009].
Unfortunately, the existing modules that support cameras in
OpenCV are not robust for more than two of those devices and
were not developed with object-oriented concepts in mind. Since
we want our software to grow and solidly support multiple cameras,
videoInput library [Watson 2009] was integrated. Theoretically, it
supports up to 20 cameras and is compatible with every video input
device that provide a DirectShow interface [Microsoft Corporation
2009].
Regrettably, it was verified that the DirectShow interface provided
by the Optitrack FLEX:V100 cameras (used in our experiments)

was only able to support one device at a time. For this reason we
implemented two new methods in a concrete class for these types
of cameras using Optitrack SDK. The software worked flawlessly
after this tiny modification, demonstrating in practice the power of
the designed architecture.
The graphical interface was entirely built using Qt library [Trolltech
2009]. It is simple, has an open source license and is portable to
many operating systems. In addition it provides a easy way to use
OpenGL for fast 2D or 3D graphics.
Currently, OpenMoCap only runs in Windows [Microsoft Corpora-
tion 2009] because included camera implementations are only sup-
ported in this operating system. Besides that, threads were imple-
mented using Win32 API, because Qt threads are slow for our kind
of use. Future versions of this software may support other operating
systems just by creating concrete classes for cameras and threads,
once they were all designed as abstract modules and the rest of the
code is portable.

5 Experiments

In this section we present the designed experiments to assess our
software and the created motion capture workflow. Furthermore,
we discuss their results qualitatively and quantitatively, whenever
possible.
In order to obtain quantitative results, we compared our solution
with a commercial optical motion capture system made by Natural-
Point [OptiTrack 2008]. Tracking Tools 2.0 can output data in a raw
point cloud format and also can display information about tracked
2D POIs, making it a great choice for our analysis. Therefore, we
considered its produced data as ground truth.
All experiments were carried out with the same computer, config-
ured with a Intel Core 2 Quad Q6600 processor, 4GB of RAM and a
Geforce 8800 GTX. Further, we used the same cameras (OptiTrack
FLEX:V100) for both programs. Those devices have a 480p resolu-
tion and are capable of obtaining frames at 100Hz. They also have
IR LEDs attached and a IR filter that helps POI detection. Finally,
identical passive reflexive markers were employed.

5.1 Precision and Stability of 2D Centroids

The main goal of this first experiment is to verify our POI detection
algorithm in a static situation. We compare our software results
directly with the ones obtained from Tracking Tools, which uses
special hardware inside the camera to perform that task. We con-
figured both approaches with the same parameters values shown in
Table 1.

Table 1: POIs Detection Configuration

Parameter Value
Resolution 640 x 480 pixels
Processing Speed 25 frames per second
Intensity Threshold 230
Minimum Area 0,005% of the Image
Maximum Area 0,400% of the Image

A marker was fixed in front of one camera supported by a tripod to
make the scene as static as possible. Figure 9 exhibits two graphs
showing noise in detected POI coordinates during 50 frames by
both approaches.
We applied the normality test of Shapiro-Wilk [Boslaugh and Wat-
ters 2008] to a sample of 1000 frames, trying to characterize the
generated noise. The result was negative, meaning it is not a gaus-
sian noise. Therefore we analyzed this larger sample using order
statistics displayed in Table 2.
The values presented in Table 2 imply that the difference between
OpenMoCap and Tracking Tools is very small when detecting POI
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Figure 9: X Coordinates from a Static POI Obtained by OpenMo-
Cap and Tracking Tools

Table 2: Comparative Order Statistics for 2D Centroid Detection

in subpixels OpenMoCap Tracking Tools
5th Percentile of X 133,164 133,136
Median of X 133,167 133,167
95th Percentile of X 133,201 133,201
5th Percentile of Y 352,826 352,826
Median of Y 352,838 352,844
95th Percentile of Y 352,906 352,856

centroids, from the order of hundredths of pixels. Finally, the cal-
culated percentiles suggest that OpenMoCap has less noise than
Tracking Tools in X coordinate, but more noise in Y coordinate.

5.2 Tracking

We evaluated our tracking module by comparing trajectories. The
chosen movement for this analysis was from a simple pendulum
because its ideal path can easily be described by an arc of a circum-
ference.
OpenMocap and Tracking Tools were configured just like the first
experiment, as shown in Table 1. The only difference was the cap-
ture speed, in this experiment 50Hz. In addition, alpha and beta
values from our tracker were set to 1,0 and 0,8, respectively.
Due to the difficulty of performing the pendulummovement exactly
in a plane parallel to the camera’s image one, several periods were
captured alternating both approaches. Since we consider measures
from Tracking Tools our ground truth, we fitted a curve to its re-
sults. Figure 10 shows the fitted trajectory and one random period
acquired by OpenMoCap.
Two important conclusions can be taken based on this graph. The
first one is qualitative, regarding the quality of the motion captured
by OpenMoCap. The obtained trajectory is exactly the one ex-
pected from a simple pendulum. Slow speed on extremities and
faster ones while getting closer to the center. Besides that, the
movement is also symmetrical.
The second observation is quantitative and it is related to the exist-
ing displacement between detected OpenMoCap centroids and the
places that they should appear (points belonging to the fitted curve).
Table 3 summarizes this displacement error. Considering that there
is friction and the measures could not be obtained simultaneously,
those values let us believe that our tracker perfoms like the com-
mercial solution.

5.3 Camera Parameters Estimation

Empirically, it was verified that the implemented algorithm in this
work for estimation of camera parameters only works well in situa-
tions where the two used cameras are almost in the same plane. In
other words, when there is only a small rotation between them.

Figure 10: Tracking Tools Fitted Trajectory and OpenMoCap Sam-
ple Trajectory

Table 3: Displacement Error

Error Values (pixels)
Minimum e Maximum 0,004 e 0,254
Median 0,087
85th Percentile 0,125

This happens because the cost function needs many points corre-
spondence to be discriminant. Therefore, when using just a small
number of them, the obtained solution is a local minimum. Fu-
ture work includes recording points correspondence for a few sec-
onds from a scene in order to obtain more projections relations.
Finally, the number of estimated camera parameters could be in-
creased, aiming to achieve a better representation of a real camera.
5.4 3D Structure

A direct comparison between 3D coordinates from a structure re-
covered with OpenMoCap and with Tracking Tools is not possible.
The main reason for this is that in our approach we do not have a
real scale factor while the commercial approach has.
Despite such difficulty, this work proposes a way to evaluate
the quality of the reconstructed structure by comparing distances.
This is valid because a point can uniquely be defined in a 3D
space through the intersection of four spheres, with trilateration
[Doukhnitch et al. 2008].
Figure 11 shows different views of the chosen scene containing a
seven marker structure. Two markers on the top of the largest box,
two over the black cube and three over a ”L” shaped object.
The scene was kept static and was captured by the two programs.
The only difference in the starting conditions was that the commer-
cial solution used a third camera (Tracking Tools does not allow less
that three cameras for 3D capture) and was calibrated. Our software
used just two cameras and the seven points correspondence avail-
able in the scene. Figure 12 compares qualitatively the structure
obtained by both applications.
Tables 4 and 5 show the calculated euclidean distance between
points in the structure recovered by Tracking Tools (in meters) and
OpenMoCap.
Considering that both structures are similar and the trilateration
principles cited earlier, there must be a multiplicative factor that
approximates those distances. Table 6 exhibits the normalized ra-
tios. The lower the dispersion of this multiplicative factor, the better
is the quality of the reconstructed structure.
The median of these samples is 0,658. Taking into account only the
first and the third quartiles of them, 0,524 and 0,702, respectively,
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Figure 11: Scene with 3D Marker Structure

Figure 12: 3D Structure Comparison

Table 4: Euclidean Distance Between Points - Tracking Tools
1 2 3 4 5 6 7

1 0.075 0.561 0.590 0.498 0.448 0.421
2 0.530 0.557 0.521 0.482 0.440
3 0.313 0.378 0.518 0.435
4 0.510 0.474 0.370
5 0.281 0.283
6 0.106

Table 5: Euclidean Distance Between Points - OpenMoCap
1 2 3 4 5 6 7

1 0,380 2,876 4,162 2,571 3,064 2,883
2 2,708 4,028 2,677 3,192 2,947
3 3,142 1,986 3,297 2,875
4 4,069 2,668 2,176
5 2,685 2,606
6 0,576

Table 6: Multiplicative Factor Between Distances from OpenMo-
Cap and Tracking Tools

1 2 3 4 5 6 7
1 0,504 0,510 0,702 0,514 0,681 0,682
2 0,508 0,719 0,512 0,659 0,668
3 1,000 0,524 0,634 0,658
4 0,794 0,561 0,585
5 0,951 0,916
6 0,540

the maximum difference from the median is 0,134. Therefore the
maximum error in this piece of data is around 20%, using Tracking
Tools as ground truth. This should be reasonable given our software
starting conditions.

5.5 Output and 3D Movement

Even with all limitations of this work, it was possible to capture
simple movements from a person with markers in real time at 50Hz.
The figure in the first page of this paper shows a key frame of the
produced video. The complete video sequence can be downloaded
at [OpenMoCap 2009].

5.6 Processing Time

A question that must be answered in this work is if the implemented
software architecture is able to record movement in real time. In
other words, which the maximum attainable frame rate with the
built workflow is. Figure 13 is an area plot that shows the con-
tribution of each step involved in the processing chain to the to-
tal processing time for a series of 175 frames. Those frames were
specially chosen because of the highest processing peaks observed
while recording movement.

Figure 13: Area Plot of Total Processing Time in OpenMoCap

An immediate conclusion of the chart shown in Figure 13 is that
almost all processing time is consumed by POI detection. The other
steps correspond to minimal portions of the total effort required to
record movement. This is why many commercial systems often
implement POI detection in hardware.
Another important observation about Figure 13 is regarding pro-
cessing peaks. The main reason for their occurrence is shared sys-
tem resources. Processing peaks effectively determine how fast it is
possible to record movement, depending on the final use of data. If
it is acceptable to lose data from a frame and interpolate trajectories
to fix that situation, our software can record movement at 50Hz. On
the contrary, if it is not possible to use interpolation, our software is
able to record movement at 25Hz.
There is still one contribution of this work that needs to be assessed,
the multithreaded architecture. In order to evaluate it, a scene with
20 markers was observed by a variable number of cameras. Figure
14 is a boxplot of the number of cameras used by respective times
spent by our software while detecting POIs (most time consuming
task performed by our software).
Boxes on the graph represent the intervals between the first and the
third quartiles of the samples, i.e. where 50% of obtained measures
are located. The larger the number of cameras connected to our
software the bigger the boxes are, meaning more data dispersion
and less reliability. This is expected and it happens because the
operating system shares hardware resources.
Finally, the last interesting conclusion about Figure 14 is related to
processing times averages, symbolized by the small squares. Until
the fourth camera, only a increase of two milliseconds is perceived
on each average. This is much less than the time required to exe-
cute POI detection by just one camera, which is approximately six
milliseconds. Therefore our multithreaded architecture is validated.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

159



Figure 14: Boxplot of POI Detection Processing Time by Number
of Cameras

6 Conclusion

In this work, we constructed a real time optical motion capture sys-
tem from the beginning. The developed software for acquisition and
interpretation of data has an open source code. It is a standalone so-
lution, as OpenMoCap includes all the components to process the
signal, and its architecture is flexible and extensible as it is possible
to modify and add specific modules to improve the workflow. In
this way, extensions to allow markless motion capture or to change
the camera set can be easily implemented.
This work is part of a project to develop an efficient motion capture
system. With this open source system we are making an effort to
construct a robust and cheap solution to supply the need for mocap
data in character animation in Brazil and in other places where it is
not widely used for economical and absence of expertise reasons.
The experimental results show that although it is not a very pre-
cise and robust system yet, simple animations can be done with
OpenMoCap. Several improvement ideas came up along the devel-
opment of this software. Unfortunatelly, they haven’t been imple-
mented yet due to the lack of time and resources available. As a
suggestion to continue this project some of these improvements are
listed bellow.

∙ Define new experiments to better characterize our software.
∙ Extend OpenMoCap to use more and generic cameras.
∙ Amend our camera parameters estimation process in order to

obtain real scale factor and better precision, allowing facial
motion capture.

∙ Improve our software tracker.
∙ Perform automatic model initialization.
∙ Develop POI detection using GPU or distribute processing

across a local network with cheap computer nodes.
∙ Produce output in a hierarchical format, like BVH Biovision

Hierarchy.
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