
Automatic Sprite Shading

Djalma Bandeira and Marcelo Walter

Centro de Informática - UFPE, Brazil

{dbs, marcelow}@cin.ufpe.br

(a) (b) (c) (d) (e)

Figure 1: From the outlines (a) we consider the basic colors (b) that are taken as input to generate different shading distributions (c, d, e)
controlled by a local light source.

Abstract

Sprites have been present since the first arcade games and console
generations. Despite the advances in computer graphics and the
whole representation of virtual worlds on 3D environments, 2D-
based games still have their market, specially on portable consoles
and mobile devices. The visual quality of today’s games have incre-
ased as a result of hardware improvements in processing power, me-
mory, and a richer color gamut. However, most of the editing task
is still manual, using graphics editing tools. We present a method to
automatically generate shading distribution on sprites, one impor-
tant step during the editing process that is time demanding for most
manual works on art design today. Our method allows to control the
position of a local light source and to generate an approximation of
the shading distribution effect. Although our solution is not phy-
sically accurate, according to the shape of the represented object,
it can produce well usable results for 2D game systems in many
practical cases, when compared with handmade sprite shading.

Keywords:: Real-time processing, art design, programming tech-
niques, computer animation

1 Introduction

Two-dimensional games have a large impact on the entertainment
industry today. Even with the evolution of 3D graphics, these ga-
mes still assume an important role on the market. This is motivated
for several reasons, from availability and low cost of mobile devi-
ces, to a requirement of simple but “catchy” graphics on games for
kids. Besides, the development of native 2D games is generally less
complicated than 3D games, specially on art related stages. The
production is also widely explored by beginner game developers,
for learning and application of basic 2D fundamentals.

Inside the game development process there is the art design stage,
which is generally time consuming. For many projects, a team of
game artists share the task of designing the visual identity for a
game. In this stage, there are steps of graphics production and edi-
ting. This involves, among other things, art and effects on raster
graphics, texture manipulation and, as the focus of our work, sprite
editing.

The process of sprite generation and editing in game development
is still a manual artistic composition for most cases. In fact, most
of the literature describes the process as a time demanding proce-
dure. It is generally presented as tutorials on websites and pixel
art communities [Yu 2005; Tsugumo 2001; Sedgeman et al. 2004],
although some basic concepts can be found on references such as
[Feldman 2001]. Here we address the step of sprite editing related
to the manipulation of shading effects, used to increase details on
2D images and make them look more like a 3D object, lit by a local
light source.

Most of the solutions used nowadays rely on manual graphics

editing on the image considering one or more fixed light sour-
ces. Alternatively, some solutions build a 3D coarse representation
of the shape to better estimate and generate shading details, and
then synthesize and express this information as a 2D image. Both
methods have drawbacks when a new shading configuration is de-
sired, requiring more image editing or another retrieval of shading
information for the 3D representation in order to achieve the expec-
ted results.

We propose here an automatic solution to estimate and generate
shading distributions on sprites which allows to control the posi-
tion of a light source and experiment the results in real-time. Our
approach, although straightforward, generates a visually consistent
approximation of shading effects considering the light source. The
results presented show good visual quality when applied on basic
2D sprites, which by nature do not require a highly precise shading
distribution. Figure 1 shows the use of our method to automatically
synthesize shading distributions controlled by the position of a local
light source.

2 Related Work

To the best of our knowledge, there are no references involving sha-
ding manipulation directly related to sprites. However, more gene-
ral approaches were presented, particularly focused on animations.
One relevant work is [Johnston 2002] that presents a method to ap-
proximate and control the lighting distribution for 2D cel anima-
tion to aid the composition of cartoon live-action scenes. He uses a
multi-channel image information to correct and obtain what would
be a good approximation of normals, generating very convincing
results for the final composed shading. This inspired the later work
of Bezerra and colleagues [Bezerra et al. 2005], where they present
a pipeline for 2D animation that also uses estimated normals from
an outlined image to approximate and generate shading details, in
addition with some simplifications from the previous work. Ac-
cording to the authors, the technique they proposed was the only
method genuinely image-based so far and is easily applied to 2D
cel animation.

Another work that deserves attention is [Anjyo et al. 2006]. They
proposed a method to manipulate stylized light and shading anima-
tions in real-time, allowing the control of properties such as sca-
ling, rotation, translation and splitting on shaded areas. Although
flexible, their method still needs additional capabilities on tasks like
making shaded areas as stylized highlights more editable. The work
in [Todo et al. 2007] follows the same concept, presenting a set
of algorithms to manipulate local shading distribution for a bet-
ter consistence and enhancement on the final results. Although it
is possible to obtain very good shading approximations with these
methods, both approaches work based on 3D domain applications.

These related works present techniques on shading construction
relying on 3D information or normal reconstruction to work, and
while some may be suitable to be applied on sprites as well, they

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

76



generally demand several adjustments and/or layer constraints and
manipulation for a good result. Our technique, on the other hand,
provides a visual consistent shading approximation, exchanging the
not so required physical accuracy on sprite images for a more flexi-
ble and fast method aiming both artists and beginners users. A good
argument for our method is that what mainly differs a sprite shading
from conventional shading effects on animations, is the fact that the
former case generally considers an arbitrary light source not related
to the external environment.

3 Method

The method we propose is divided into the following four stages,
explained below:

1. Image Segmentation

2. Highlight Spots Approximation

3. Shading Distribution

4. Final Composition

3.1 Image Segmentation

We consider initially as input a sprite image containing only basic
colors. In this first stage, we segment the image and separate the
pixels that will be processed later. We first mark the background
pixels with an uniform color as invalid pixels. The outline pixels
themselves may or may not be also set as invalid pixels. This par-
ticular condition for outlines can alter the result drastically, as we
use the key idea that the outline pixels separate distinct regions of
the sprite and therefore determine basic shape and sections of the
object being represented. This affects directly the shading distri-
bution of separated small regions instead of considering the whole
image as a single object without interior outlines. The final shading
result will depend on the outlines distribution. On the other hand,
ignoring the interior outlines can be useful in cases where a global
shading distribution is desired.

The result of the image segmentation can be seen as a mask, where
all the other colors are interpreted as valid pixels and represent the
same region to be processed. Figure 2 below illustrates how the
presence of outlines affects the mask and the final result:

(a) (b)

Figure 2: Example of mask and the respective shading without (a)
and with (b) outline constraint.

3.2 Highlight Spots Approximation

Once the image is properly segmented, we now have to search for
possible highlight spots. These spots are the regions of the image
with the maximum exposure to the light source. First, we make
image sections in one of the two axis directions (x or y) by tracking
possible segments following the opposite axis. Considering initially
the y-direction sectioning, we scan the entire image for x-segments

as continuous lines of valid pixels. The segment ends when an inva-
lid pixel is found or the bound of the sprite image has been reached.
This may lead to several segments per line on the image. Since our
method allows to control the position of the light source, we define
the parameter lp as the local position of the light inside the range
[0.0, 1.0], by taking the [0.0, 0.0] position as the top-left corner of
the coordinate system. Suppose that the end of a certain segment
was found and p0 and p1 are the start and ending pixels positions,
we calculate the center pixel pc using a simple linear interpolation:

pc = p0 + lp(p1 − p0)

Since lp controls the light position, it consequently adjusts the cen-
ter pixel on both directions to a position that “follows” the light
source. We repeat this procedure for every single line of the sprite
image and once all center pixels were computed, we have a sectio-
ning on the y-direction. We restart this process by following now
the x-direction looking for y-segments. Figure 3 shows each sepa-
rated sections and the combination of both.

The next step is related to the shading weight of pixels. Now that
we computed the sections, we classify every pixel in three levels of
shading weight: weight 2 for those pixels inside the intersection of
both X and Y segments, weight 1 for those pixels that belong to
only one section and weight 0 for those out of any section. These
weights determine the exposition of every pixel from the current
light source, considering that those with weight 2 are the center of
a highlight spot.

3.3 Shading Distribution

After the shading weight is properly assigned for every pixel, we
now calculate the average shading distribution. We do this for all pi-
xels by averaging the weight of every pixel inside the neighborhood
of a certain regular window of size Sw. The window size is a para-
meter that varies according to the size of the sprite and the desired
shading diffusion of a pixel among its neighbors. We consider set-
ting the size Sw = 7 as a good value for examples around 100
pixels of resolution. Once the shading distribution in the whole
image is processed, we blur it to reduce some sharpness that may
affect the final result. We do this by averaging them again on a
neighborhood window of size Sb that may be different in size from
Sw. We set Sb = 3 for the case previously discussed, redefining
both windows sizes to vary according to the sprite image dimensi-
ons. We can adjust both window sizes Sd and Sw independently, to
better fit the resolution and desired shading effect. Figure 4 shows
how we can improve the computed 3D look of two basic forms by
adjusting the window size parameters.

(a)

(b) (c)

Figure 4: 3D shape approximation on shading of the input (a) can
be improved from (b) to (c) by resetting the window values Sw = 7
and Sb = 3 accordingly. The parameters were reset to Sw = 49
and Sb = 15 for a sphere shape, and Sw = 21 and Sb = 9 for a
torus shape. The yellow dot in (a) is the light source position.

Once all average weights are computed, we reset all the values to
the range [0.0, 1.0] by considering the minimum and maximum ave-
rage shading distribution found on the previous step to finally have

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

77



(a) (b) (c)

Figure 3: Sectioning on the y-direction (a), x-direction (b) and the combination of both directions (c) with the highlight centers marked as
red pixels. The green pixels are the center pixels for each segment.

the estimated shading distribution. In Figure 5 we show some sha-
ding distributions considering the light source in different positions.
Notice how the lighter and darker regions change according to the
light position.

Figure 5: Variety of shading distributions based on the local light
source position (seen as a yellow dot).

3.4 Final Composition

This last stage consists of combining the shading distribution pre-
viously computed to obtain different levels of shaded colors from
the basic ones. We call these variations color shades, whose num-
ber per basic color is defined as the number of shades. To allow
variable compositions, the color shades may be controlled by two
parameters: shading offset and shading shift.

3.4.1 Shading Offset

The shading offset controls the distribution of color shades for every
basic color inside the range [0.0, 1.0] of the shading distribution.
This parameter may be set evenly for every color shade considering
the number of shades, or may be adjusted to change the balance dis-
tribution among them. Figure 6 illustrates different shading offsets
for the basic skin color as well as the result on the entire sprite.

3.4.2 Shading Shift

The second parameter, shading shift (Ss), will control to which
direction the variation of colors will assume for the current color
shade. Let us consider a simple case of four shades for the previous
sprite. The trivial case of Ss = 0 will treat the first color shade
as the basic color of the sprite image among the possible colors.
Lower values of shading distribution with this set leads to darker
versions of the basic color. Now, if the shading shift is set to 1,
as can be seen on Figure 7, the basic colors will be “shifted” to
the right on the palette of possible colors. The same will occur for
negative values, shifting to the left of the palette instead.

Figure 6: Different shading distributions adjusted by the offset.

3.4.3 Shading Composition

The two parameters discussed above will allow a wide range of
shading variations. To calculate new colors from the basic color,
we consider the shading shift Ss and a delta shading parameter ∆S.
The delta shading is the percent of the basic color that separates
different color shades. So, for every increase in the color shade, we
have the corresponding color as a subtraction of the basic color.

Since we have the shading offset for each color shade, we can find
from which shade S every pixel belongs to, by evaluating the value
of its shading distribution. We then set a γ parameter as the value of
the highest RGB component for the basic color. Now considering
c as the color component and the previously discussed parameters,
the final color c′ can be defined as:

c′ = c− (γ∆S)(S − Ss)

Notice that the shading shift Ss adjusts the overall color variation
by controlling positive or negative subtraction of the basic color

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

78



Figure 7: One of the color palettes (skin color) with selected sha-
des inside the green rectangle. The shift adjusts a new set of color
shades on the palette.

from the difference of the shade S. With the final color computed
for every color component, the last operation is to clamp values out-
side the range [0, 255] of possible colors on the RGB color space.

3.4.4 Extended Applications

After we have computed the shading information, other shading-
based effects can be provided. One example is the highlight spe-
cular effect. Assuming that the shading distribution s of a certain
pixel is higher than a threshold ω, we can obtain the new color ch

inside the specular region from the previous color c′ and the high-
light level β((s− ω)/(1.0− ω)) as:

ch = (1.0− β)c′+ βsc

In this equation, β is the highlight level for the shading considering
the distance from the threshold to the maximum value allowed 1.0.
Then, we obtain the new color by balancing this highlight level
between the previous color shade c′ and a specular color sc. This
is a simple approach we propose to control the effect with just two
parameter tweaks, but other ideas can be elaborated and applied as
well. Figure 8 shows and example using this method.

(a) (b) (c)

Figure 8: Our application extended to handle specular highlights.
The glass goblet sprite (a) without (b) and with (c) highlights. The
parameter values used were ω = 0.4 and sc = 0.9 for all color
components.

Another extension for application using shading information is to
generate dithering effects, instead of uniform color shades. We used
the Floyd-Steinberg algorithm [Floyd and Steinberg 1977] to gene-
rate an alternative shading with less color shades, such as presented
in Figure 9. The dithering effect as a shading representation with
less color shades can be used for an alternative shading style or a
palette simplification solution duo to hardware/software limitations.

(a) (b)

Figure 9: Sprite shading without (a) and with (b) dithering effect.

4 Results

Most results presented in this paper were computed considering
sprite images around 100 pixels of resolution. With minimum ad-
justments, we can handle specular highlights by considering that
pixels whose shading distribution is over a certain threshold will
assume a specular color. Figure 8 shows and example of this appli-
cation on a glass goblet sprite.

Figure 10 shows a comparison between a manual shading effect and
the automatic shading from our method. Notice that, even with the
differences on shading distribution, our result is still visually com-
patible with a manual shading work and good enough for practical
use. The computed result can later be refined by user manipula-
tion. The manual artistic work may take a few hours whereas our
solution is real-time, and besides, allows arbitrary light positions.

One possible drawback of an automatic solution is the shading
coherence on sprite animation. Our approach, however, preserves
this coherence, allowing batch processing without compromising
the final work. Figure 11 shows a few frames of an animation loop
after applying the automatic shading from the same light source.

Finally, in Figure 12 we show the shading processing with different
parameter sets for shading shift and light source position to simulate
alternative local light conditions.

5 Conclusion

We proposed an approach to estimate shading distributions on sprite
images, considering adjustable parameters such as position of the
light source and style related parameters involving variation of co-
lor shades. Although simple and fast, our method can be applied on
a wide variety of sprites with a very flexible control of shading de-
tails at interactive rates. This ensures a better user experimentation
and a faster achievement of desired results that on traditional tech-
niques. The shading information generated allows the implementa-
tion of effects that extend beyond those presented here. Like [Be-
zerra et al. 2005], our method is genuinely 2D and the only one
focused on sprite images. Since it does not require any 3D infor-
mation, it is easy to implement and so highly recommended for be-
ginner game developers to learn and test on their applications. Our
technique is more recommended for low resolution sprite images,
although its application on large sprites or even entire scenes may
generate good shading results depending on the color distribution
and/or outline details. Figure 13 shows how the processed shading
can be evaluated as a normal distribution computed with a center
light source and image gradient calculation from the shading. This
is just to establish a comparison between the shading on the formal
procedure and the use of recovered normals from the same shading.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

79



We used the Phong illumination model [Phong 1975] for the nor-
mals with sphere mapping coordinates.

For future work, we will consider possible adaptations of the
method for vector graphics, since games with vector-based images
have drawn a lot of attention in the last years. We will also focus on
improvements to approximate the shading coherence to the object
shape.

(a) (b) (c)

Figure 10: A basic color sprite (a) and the result of a manual sha-
ding work (b) and our method (c).

Figure 11: Frame sequence of an animation loop. The shading
coherence on the resulting animation is well preserved.

Acknowledgements

We would like to thank Meantime Mobile Creations for helping
us test the method by sending some state of the art game spri-
tes (Figure 10). Work partially supported by FACEPE through
grants IBPG-0216-1.03/08 and APQ-0203-1.03/06 and CNPq th-
rough grant 483356/2007.

References

ANJYO, K., WEMLER, S., AND BAXTER, W. 2006. Tweakable
light and shade for cartoon animation. In NPAR ’06: Procee-
dings of the 4th international symposium on Non-photorealistic
animation and rendering, ACM, New York, NY, USA, 133–139.

BEZERRA, H., FEIJO, B., AND VELHO, L. 2005. An image-based
shading pipeline for 2d animation. In SIBGRAPI ’05: Procee-
dings of the XVIII Brazilian Symposium on Computer Graphics
and Image Processing, IEEE Computer Society, Washington,
DC, USA, 307.

FELDMAN, A. 2001. Designing Arcade Computer Game Graphics.
Wordware Publishing, Inc.

(a) Shifts: 0, 0, -1 and 2.

(b) Shifts: 2, 1, 0 and -1.

Figure 12: Applications using 4 (a) and 8 (b) shades with variati-
ons on local light source position and shading shift.

(a) (b)

Figure 13: An evaluation of normal approximation. The shading
on a standard procedure (a) and using estimated normals (b) obtai-
ned from the same shading.

FLOYD, R., AND STEINBERG, L. 1977. An adaptive algorithm for
spatial grey scale. In Proceedings of the Society for Information
Display, 75–77.

JOHNSTON, S. F. 2002. Lumo: illumination for cel animation. In
NPAR ’02: Proceedings of the 2nd international symposium on
Non-photorealistic animation and rendering, ACM, New York,
NY, USA, 45–ff.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6, 311–317.

SEDGEMAN, L., DAVIES, K., DIXON, I., VAN BRUGGEN, B.,
PLEIZIER, W., AND LEE, O., 2004. Pixel joint. http://

www.pixeljoint.com.

TODO, H., ANJYO, K.-I., BAXTER, W., AND IGARASHI, T. 2007.
Locally controllable stylized shading. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 papers, ACM, New York, NY, USA, 17.

TSUGUMO, 2001. So you want to be a pixel artist?
http://www.petesqbsite.com/sections/

tutorials/tuts/tsugumo/default.htm.

YU, D., 2005. Derek Yu’s Website. http://www.derekyu.

com.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

80


